Voir la notice du chapitre de livre
@article{TIMM_2010_16_4_a25,
author = {E. V. Strelkova and V. T. Shevaldin},
title = {Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a~differential operator},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {272--280},
year = {2010},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/}
}
TY - JOUR AU - E. V. Strelkova AU - V. T. Shevaldin TI - Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 272 EP - 280 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/ LA - ru ID - TIMM_2010_16_4_a25 ER -
%0 Journal Article %A E. V. Strelkova %A V. T. Shevaldin %T Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator %J Trudy Instituta matematiki i mehaniki %D 2010 %P 272-280 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/ %G ru %F TIMM_2010_16_4_a25
E. V. Strelkova; V. T. Shevaldin. Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 272-280. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/
[1] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp.
[2] Lyche T., Schumaker L.L., “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl
[3] Shevaldina E.V., “Approksimatsiya lokalnymi $\mathcal L$-splainami chetnogo poryadka, sokhranyayuschimi yadro differentsialnogo operatora”, Izv. TulGU (Estestvennye nauki.), 2 (2009), 62–73
[4] Shevaldina E.V., “Lokalnye $\mathcal L$-splainy, sokhranyayuschie yadro differentsialnogo operatora”, Sib. zhurn. vychisl. matematiki, 13:1 (2010), 111–121 | Zbl
[5] Wronicz Z., Chebyshevian splines, Dissertationes Mathematical, Polska Acad. Nauk, Inst. Matematyczny, Warszawa, 1990, 99 pp. | MR
[6] Shevaldin V.T., “Approksimatsiya lokalnymi $L$-splainami, sootvetstvuyuschimi lineinomu differentsialnomu operatoru vtorogo poryadka”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 2, Ekaterinburg, 2006, 195–213
[7] Subbotin Yu.N., “Approksimatsiya polinomialnymi i trigonometricheskimi splainami tretego poryadka, sokhranyayuschaya nekotorye svoistva approksimiruyuschikh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, Ekaterinburg, 2007, 156–166
[8] Zhdanov P.G., Shevaldin V.T., “Formosokhranyayuschie lokalnye $L$-splainy, sootvetstvuyuschie proizvolnomu lineinomu differentsialnomu operatoru tretego poryadka”, Zbirnik prats In-tu matematiki NAN Ukrani, 5, no. 1, 2008, 124–141
[9] Subbotin Yu.N., “Formosokhranyayuschaya eksponentsialnaya approksimatsiya”, Izv. vuzov. Matematika, 11 (2009), 53–60 | MR | Zbl
[10] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–173
[11] ter Morsche H.G., Interpolation and extremal properties of $\mathcal L$-spline functions, dis., Techinische Hogeschool Eindhoven, Eindhoven, 1982, 124 pp. | MR | Zbl