Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 272-280
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct local $\mathcal L$-splines with uniform nodes that preserve subsets from the kernel of a linear differential operator $\mathcal L$ of order $r$ with constant real coefficients and pairwise distinct roots of the characteristic polynomial. Pointwise estimates are found for the error of approximation by the constructed $\mathcal L$-splines on classes of functions defined by differential operators of orders smaller than $r$.
Keywords: approximation, local $\mathcal L$-splines, differential operator.
@article{TIMM_2010_16_4_a25,
     author = {E. V. Strelkova and V. T. Shevaldin},
     title = {Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a~differential operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {272--280},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/}
}
TY  - JOUR
AU  - E. V. Strelkova
AU  - V. T. Shevaldin
TI  - Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 272
EP  - 280
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/
LA  - ru
ID  - TIMM_2010_16_4_a25
ER  - 
%0 Journal Article
%A E. V. Strelkova
%A V. T. Shevaldin
%T Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 272-280
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/
%G ru
%F TIMM_2010_16_4_a25
E. V. Strelkova; V. T. Shevaldin. Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 272-280. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/

[1] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp.

[2] Lyche T., Schumaker L.L., “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[3] Shevaldina E.V., “Approksimatsiya lokalnymi $\mathcal L$-splainami chetnogo poryadka, sokhranyayuschimi yadro differentsialnogo operatora”, Izv. TulGU (Estestvennye nauki.), 2 (2009), 62–73

[4] Shevaldina E.V., “Lokalnye $\mathcal L$-splainy, sokhranyayuschie yadro differentsialnogo operatora”, Sib. zhurn. vychisl. matematiki, 13:1 (2010), 111–121 | Zbl

[5] Wronicz Z., Chebyshevian splines, Dissertationes Mathematical, Polska Acad. Nauk, Inst. Matematyczny, Warszawa, 1990, 99 pp. | MR

[6] Shevaldin V.T., “Approksimatsiya lokalnymi $L$-splainami, sootvetstvuyuschimi lineinomu differentsialnomu operatoru vtorogo poryadka”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 2, Ekaterinburg, 2006, 195–213

[7] Subbotin Yu.N., “Approksimatsiya polinomialnymi i trigonometricheskimi splainami tretego poryadka, sokhranyayuschaya nekotorye svoistva approksimiruyuschikh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, Ekaterinburg, 2007, 156–166

[8] Zhdanov P.G., Shevaldin V.T., “Formosokhranyayuschie lokalnye $L$-splainy, sootvetstvuyuschie proizvolnomu lineinomu differentsialnomu operatoru tretego poryadka”, Zbirnik prats In-tu matematiki NAN Ukrani, 5, no. 1, 2008, 124–141

[9] Subbotin Yu.N., “Formosokhranyayuschaya eksponentsialnaya approksimatsiya”, Izv. vuzov. Matematika, 11 (2009), 53–60 | MR | Zbl

[10] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–173

[11] ter Morsche H.G., Interpolation and extremal properties of $\mathcal L$-spline functions, dis., Techinische Hogeschool Eindhoven, Eindhoven, 1982, 124 pp. | MR | Zbl