Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a~differential operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 272-280

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct local $\mathcal L$-splines with uniform nodes that preserve subsets from the kernel of a linear differential operator $\mathcal L$ of order $r$ with constant real coefficients and pairwise distinct roots of the characteristic polynomial. Pointwise estimates are found for the error of approximation by the constructed $\mathcal L$-splines on classes of functions defined by differential operators of orders smaller than $r$.
Keywords: approximation, local $\mathcal L$-splines, differential operator.
@article{TIMM_2010_16_4_a25,
     author = {E. V. Strelkova and V. T. Shevaldin},
     title = {Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a~differential operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {272--280},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/}
}
TY  - JOUR
AU  - E. V. Strelkova
AU  - V. T. Shevaldin
TI  - Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a~differential operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 272
EP  - 280
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/
LA  - ru
ID  - TIMM_2010_16_4_a25
ER  - 
%0 Journal Article
%A E. V. Strelkova
%A V. T. Shevaldin
%T Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a~differential operator
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 272-280
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/
%G ru
%F TIMM_2010_16_4_a25
E. V. Strelkova; V. T. Shevaldin. Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a~differential operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 272-280. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a25/