Exact inequality between uniform norms of an algebraic polynomial and its real part on concentric circles in the complex plane
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 254-263
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the class $\mathcal P_n^*$ of algebraic polynomials of a complex variable of degree at most n with complex coefficients and a real constant term, we estimate the uniform norm of a polynomial $P_n\in\mathcal P_n^*$ on the circle $\Gamma_r=\{z\in\mathbb C\colon|z|=r\}$ of radius $r>1$ in terms of the norm of its real part on the unit circle $\Gamma_1$. More precisely, we study the best constant $\mu(r,n)$ in the inequality $\|P_n\|_{C(\Gamma_r)}\leq\mu(r,n)\|\operatorname{Re}P_n\|_{C(\Gamma_1)}$. Necessary and sufficient conditions for the equality $\mu(r,n)=r^n$ are found.
Keywords: inequalities for algebraic polynomials, uniform norm, circle in the complex plane.
@article{TIMM_2010_16_4_a23,
     author = {A. V. Parfenenkov},
     title = {Exact inequality between uniform norms of an algebraic polynomial and its real part on concentric circles in the complex plane},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {254--263},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a23/}
}
TY  - JOUR
AU  - A. V. Parfenenkov
TI  - Exact inequality between uniform norms of an algebraic polynomial and its real part on concentric circles in the complex plane
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 254
EP  - 263
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a23/
LA  - ru
ID  - TIMM_2010_16_4_a23
ER  - 
%0 Journal Article
%A A. V. Parfenenkov
%T Exact inequality between uniform norms of an algebraic polynomial and its real part on concentric circles in the complex plane
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 254-263
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a23/
%G ru
%F TIMM_2010_16_4_a23
A. V. Parfenenkov. Exact inequality between uniform norms of an algebraic polynomial and its real part on concentric circles in the complex plane. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 254-263. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a23/

[1] Arestov B.V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 3–22 | MR | Zbl

[2] Arestov B.V., “Ob odnom neravenstve Sege dlya algebraicheskikh mnogochlenov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2, Ekaterinburg, 1992, 27–33

[3] Arestov B.V., “Neravenstva Bernshteina i Sege dlya trigonometricheskikh polinomov”, Izv. Ural. gos. un-ta, 58:11 (2008), 43–58

[4] Szegö G., “Über einen Satz des Hern Serge Bernstein”, Schrift. Königsberg. Gelehrten Gesellschaft, 5:4 (1928), 59–70 | Zbl

[5] Taikov L.V., “Ravnomernaya otsenka velichiny sopryazhennogo polinoma na ploskosti”, Mat. zametki, 54:6 (1993), 142–145 | Zbl

[6] Parfenenkov A.V., “Otsenka algebraicheskogo mnogochlena v ploskosti cherez znachenie ego veschestvennoi chasti na edinichnoi okruzhnosti”, Izv. vuzov. Ser. Matematika, 2010, no. 3, 92–96

[7] Bernshtein S.N., “Ob odnoi teoreme Sege”, Sobr. soch.: v 4 t., 2, Izd-vo AN SSSR, M., 1954, St. 62, 173–177

[8] Zigmund A., Trigonometricheskie ryady: v 2 t., v. 1, Mir, M., 1965, 616 pp.