On the Jackson–Stechkin inequality for algebraic polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 246-253
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Jackson–Stechkin inequality is considered, which estimates the value of the best uniform approximation of a continuous function by algebraic polynomials on a closed interval in terms of values of the modulus of continuity of the approximated function. A variant of the inequality with second-order modulus of continuity and explicit specification of the argument of the modulus of continuity and the constant is proved.
Keywords: Jackson inequality, approximation by algebraic polynomials, modulus of continuity.
@article{TIMM_2010_16_4_a22,
     author = {A. V. Mironenko},
     title = {On the {Jackson{\textendash}Stechkin} inequality for algebraic polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {246--253},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a22/}
}
TY  - JOUR
AU  - A. V. Mironenko
TI  - On the Jackson–Stechkin inequality for algebraic polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 246
EP  - 253
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a22/
LA  - ru
ID  - TIMM_2010_16_4_a22
ER  - 
%0 Journal Article
%A A. V. Mironenko
%T On the Jackson–Stechkin inequality for algebraic polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 246-253
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a22/
%G ru
%F TIMM_2010_16_4_a22
A. V. Mironenko. On the Jackson–Stechkin inequality for algebraic polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 246-253. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a22/

[1] Jackson D., Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrischen Summen gegebener Ordnung, dis., Göttingen, 1911

[2] Zygmund A., “Smooth functions”, Duke Math. J., 12:1 (1945), 47–76 | DOI | MR | Zbl

[3] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 406 pp.

[4] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 15 (1951), 219–242 | MR | Zbl

[5] Korneichuk N.P., “Tochnaya konstanta v teoreme D.Dzheksona o nailuchshem ravnomernom priblizhenii nepreryvnykh periodicheskikh funktsii”, Dokl. AN SSSR, 145:3 (1962), 514–515 | MR | Zbl

[6] Korneichuk N.P., “O tochnoi konstante v neravenstve Dzheksona dlya nepreryvnykh periodicheskikh funktsii”, Mat. zametki, 32:5 (1982), 669–674 | MR | Zbl

[7] Babenko V.F., Shalaev V.V., “Ob otsenkakh nailuchshego priblizheniya, vytekayuschikh iz kriteriya Chebysheva”, Mat. zametki, 49:4 (1991), 148–150 | MR | Zbl

[8] Foucart S., Kryakin Y., Shadrin A., “On the exact constant in the Jackson — Stechkin inequality for the uniform metric”, Constr. Approx., 29:2 (2009), 157–179 | DOI | MR | Zbl

[9] Daugavet I.K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo Leningr. un-ta, L., 1977, 184 pp.

[10] Korneichuk N.P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp.

[11] Korneichuk N.P., Polovina A.I., “O priblizhenii nepreryvnykh i differentsiruemykh funktsii algebraicheskimi mnogochlenami na otrezke”, Dokl. AN SSSR, 166:2 (1966), 281–283 | MR | Zbl

[12] Korneichuk N.P., Polovina A.I., “O priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, algebraicheskimi mnogochlenami”, Mat. zametki, 9:4 (1971), 441–447 | MR | Zbl

[13] Korneichuk N.P., Polovina A.I., “O priblizhenii nepreryvnykh funktsii algebraicheskimi mnogochlenami”, Ukr. mat. zhurn., 24:3 (1972), 328–340 | MR | Zbl

[14] Brudnyi Yu.A., “Obobschenie odnoi teoremy A.F. Timana”, Dokl. AN SSSR, 148:6 (1963), 1237–1240 | MR | Zbl

[15] Brudnyi Yu.A., “Priblizhenie funktsii algebraicheskimi mnogochlenami”, Izv. AN SSSR. Ser. mat., 32 (1967), 780–787

[16] Timan A.F., “Usilenie teoremy Dzheksona o nailuchshem priblizhenii nepreryvnykh funktsii mnogochlenami na konechnom otrezke veschestvennoi osi”, Dokl. AN SSSR, 78:1 (1951), 17–20 | MR | Zbl

[17] Dzyadyk V.K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 512 pp.

[18] Freud G., “Über die Approximation reelen stetiger Funktionen durch gewöhnliche Polynome”, Math. Ann., 137:1 (1959), 17–25 | DOI | MR | Zbl

[19] Telyakovskii S.A., “Dve teoremy o priblizhenii funktsii algebraicheskimi mnogochlenami”, Mat. sb., 70:2 (1966), 252–265 | Zbl

[20] Gopengauz I. E., “K teoreme A.F. Timana o priblizhenii funktsii mnogochlenami na konechnom otrezke”, Mat. zametki, 1:2 (1967), 163–172 | MR

[21] Mironenko A.V., “Ravnomernoe priblizhenie klassom funktsii s ogranichennoi proizvodnoi”, Mat. zametki, 74:5 (2003), 696–712 | MR | Zbl

[22] Mironenko A.V., “Otsenka velichiny nailuchshego priblizheniya klassom funktsii s ogranichennoi vtoroi proizvodnoi”, Sib. mat. zhurn., 47:4 (2006), 842–858 | MR | Zbl

[23] Mironenko A.V., “Priblizhenie klassom funktsii s ogranichennoi vtoroi proizvodnoi”, Mat. zametki, 84:4 (2008), 583–594 | MR | Zbl

[24] Sinwel H. F., “Uniform approximation of differentiable functions by algebraic polynomials”, J. Approx. Theory, 32:1 (1981), 1–8 | DOI | MR | Zbl

[25] Mironenko A. V., “Ob otsenke ravnomernogo ukloneniya ot klassa funktsii s ogranichennoi tretei proizvodnoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 145–152