On the Jackson--Stechkin inequality for algebraic polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 246-253
Voir la notice de l'article provenant de la source Math-Net.Ru
The Jackson–Stechkin inequality is considered, which estimates the value of the best uniform approximation of a continuous function by algebraic polynomials on a closed interval in terms of values of the modulus of continuity of the approximated function. A variant of the inequality with second-order modulus of continuity and explicit specification of the argument of the modulus of continuity and the constant is proved.
Keywords:
Jackson inequality, approximation by algebraic polynomials, modulus of continuity.
@article{TIMM_2010_16_4_a22,
author = {A. V. Mironenko},
title = {On the {Jackson--Stechkin} inequality for algebraic polynomials},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {246--253},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a22/}
}
A. V. Mironenko. On the Jackson--Stechkin inequality for algebraic polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 246-253. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a22/