Classification of maximal subgroups of odd index in finite groups with simple orthogonal socle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 237-245
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is obtained a classification for maximal subgroups of odd index in finite groups whose socle is isomorphic to one of the simple orthogonal groups of degree great or equal than 13.
Keywords: finite group, almost simple group, maximal subgroup, odd index.
Mots-clés : socle, orthogonal group
@article{TIMM_2010_16_4_a21,
     author = {N. V. Maslova},
     title = {Classification of maximal subgroups of odd index in finite groups with simple orthogonal socle},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {237--245},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a21/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - Classification of maximal subgroups of odd index in finite groups with simple orthogonal socle
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 237
EP  - 245
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a21/
LA  - ru
ID  - TIMM_2010_16_4_a21
ER  - 
%0 Journal Article
%A N. V. Maslova
%T Classification of maximal subgroups of odd index in finite groups with simple orthogonal socle
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 237-245
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a21/
%G ru
%F TIMM_2010_16_4_a21
N. V. Maslova. Classification of maximal subgroups of odd index in finite groups with simple orthogonal socle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 237-245. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a21/

[1] Liebeck M.W., Saxl J., “The primitive permutation groups of odd degree”, J. London Math. Soc., 31:2 (1985), 250–264 | DOI | MR | Zbl

[2] Kantor W.M., “Primitive permutation groups of odd degree, and an application to the finite projective planes”, J. Algebra, 106:1 (1987), 15–45 | DOI | MR | Zbl

[3] Maslova N. V., “Klassifikatsiya maksimalnykh podgrupp nechetnogo indeksa v konechnykh prostykh klassicheskikh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 4, 2008, 100–118

[4] Maslova N. V., “Klassifikatsiya maksimalnykh podgrupp nechetnogo indeksa v konechnykh gruppakh so znakoperemennym tsokolem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 182–184

[5] Maslova N. V., “Maksimalnykh podgrupp nechetnogo indeksa v konechnykh gruppakh s prostym lineinym ili unitarnym tsokolem stepeni ne menee 13”, Algebra i ee prilozheniya, Tr. Mezhdunar. algebr. konf., Kabardino-Balk. un-t, Nalchik, 2009, 80–82

[6] Maslova N.V., “Maksimalnye podgruppy nechetnogo indeksa v konechnykh gruppakh s prostym simplekticheskim tsokolem stepeni ne menee 13”, Maltsevskie chteniya, tez. dokl. Mezhdunar. konf., IM i NGU, Novosibirsk, 2009, 69

[7] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, Cambridge Univ. Press, Cambridge, 1990, 303 pp. | MR | Zbl

[8] Kondratev A. S., “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (1986), 57–96 | MR

[9] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[10] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[11] Aschbacher M., “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl

[12] Liebeck M.W., Praeger C.E., Saxl J., “A classification of the maximal subgroups of the finite alternating and symmetric groups”, J. Algebra, 111:2 (1987), 365–383 | DOI | MR | Zbl