On the growth rate of arbitrary sequences of double rectangular Fourier sums
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 31-37
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The theorem is proved that an arbitrary sequence $\{S_{m_k,n_k}(f,x,y)\} _{k=1}^\infty$ of double rectangular Fourier sums of any function from the class $L(\ln^+L)^2([0,2\pi)^2)$ satisfies almost everywhere the relation $S_{m_k,n_k}(f,x,y)=o(\ln k)$.
Keywords: multiple trigonometric Fourier series, almost everywhere convergence.
@article{TIMM_2010_16_4_a2,
     author = {N. Yu. Antonov},
     title = {On the growth rate of arbitrary sequences of double rectangular {Fourier} sums},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {31--37},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a2/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - On the growth rate of arbitrary sequences of double rectangular Fourier sums
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 31
EP  - 37
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a2/
LA  - ru
ID  - TIMM_2010_16_4_a2
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T On the growth rate of arbitrary sequences of double rectangular Fourier sums
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 31-37
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a2/
%G ru
%F TIMM_2010_16_4_a2
N. Yu. Antonov. On the growth rate of arbitrary sequences of double rectangular Fourier sums. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 31-37. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a2/

[1] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–157 | DOI | MR | Zbl

[2] Hunt R.A., “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues, proc. conf. Edwardsville (Ill., 1967), SIU Press, Carbondale, Illinois, 1968, 235–255 | MR

[3] Sjolin P., “An inequality of Paley and convergence a.e. of Walsh-Fourier series”, Ark. Mat., 7:6 (1969), 551–570 | DOI | MR

[4] Antonov N.Yu., “Convergence of Fourier series”, East J. Approx., 2:2 (1996), 187–196 | MR | Zbl

[5] Kolmogoroff A., “Une srie de Fourier-Lebesgue divergente preque partout”, Fund. Math., 4 (1923), 324–328 | Zbl

[6] Hardy G.H., “On the summability of Fourier series”, Proc. London Math. Soc., 12 (1913), 365–372 | DOI | Zbl

[7] Oskolkov K.I., “Podposledovatelnosti summ Fure integriruemykh funktsii”, Tr. MIAN, 167, 1985, 239–260 | MR | Zbl

[8] Konyagin S.V., “O raskhodimosti vsyudu trigonometricheskikh ryadov Fure”, Mat. sb., 191:1 (2000), 103–126 | MR | Zbl

[9] Tevzadze N.R., “O skhodimosti dvoinogo ryada Fure funktsii, summiruemoi s kvadratom”, Soobsch. AN GSSR, 58:2 (1970), 277–279 | MR | Zbl

[10] Fefferman C., “On the convergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:5 (1971), 744–745 | DOI | MR | Zbl

[11] Sjlin P., “Convergence almost everywhere of sertain singular integrals and multiple Fourier series”, Ark. Mat., 9:1 (1971), 65–90 | DOI | MR

[12] Konyagin S.V., “On divergence of trigonometric Fourier series over cubes”, Acta Sci. Math., 61:1-4 (1995), 305–329 | MR | Zbl

[13] Antonov N.Yu., “O skhodimosti pochti vsyudu posledovatelnostei kratnykh pryamougolnykh summ Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 3–18

[14] Antonov N.Yu., “O skorosti rosta posledovatelnostei kratnykh pryamougolnykh summ Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 2, Ekaterinburg, 2005, 10–29

[15] Karagulyan G.A., “Preobrazovanie Gilberta i eksponentsialnye integralnye otsenki pryamougolnykh chastichnykh summ dvoinykh ryadov Fure”, Mat. sb., 187:3 (1996), 55–74 | MR | Zbl

[16] Stein E.M., “On limits of sequences of operators”, Ann. Math., 74:1 (1961), 140–170 | DOI | MR | Zbl