Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 203-210
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

If an increasing sequence $\{n_m\}$ of positive integers and a modulus of continuity $\omega$ satisfy the condition $\sum_{m=1}^\infty\omega(1/n_m)/m\infty$, then it is known that the subsequence of partial sums $S_{n_m}(f,x)$ converges almost everywhere to $f(x)$ for any function $f\in H_1^\omega$. We show that this sufficient convergence condition is close to a necessary condition for a lacunary sequence $\{n_m\}$.
Keywords: Fourier series, modulus of continuity.
Mots-clés : Lebesgue measure
@article{TIMM_2010_16_4_a18,
     author = {S. V. Konyagin},
     title = {Almost everywhere divergence of lacunary subsequences of partial sums of {Fourier} series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {203--210},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a18/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 203
EP  - 210
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a18/
LA  - ru
ID  - TIMM_2010_16_4_a18
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 203-210
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a18/
%G ru
%F TIMM_2010_16_4_a18
S. V. Konyagin. Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 203-210. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a18/

[1] Antonov N.Yu., “Integriruemost mazhorant summ Fure i raskhodimost ryadov Fure funktsii s ogranicheniyami na integralnyi modul nepreryvnosti”, Mat. zametki, 76:5 (2004), 651–665 | MR | Zbl

[2] Antonov N.Yu., “O raskhodimosti podposledovatelnostei summ Fure funktsii s ogranicheniyami na integralnyi modul nepreryvnosti”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 2:1 (2006), 12–26

[3] Antonov N.Yu., “Raskhodyaschiesya pochti vsyudu podposledovatelnosti summ Fure funktsii iz $\varphi(L)\cap H_1^\omega$”, Mat. zametki, 85:4 (2009), 502–515 | MR | Zbl

[4] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965, 538 pp.

[5] Oskolkov K.I., “Podposledovatelnosti summ Fure integriruemykh funktsii”, Tr. MIAN, 167, 1985, 239–260 | MR | Zbl