Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 203-210
Voir la notice de l'article provenant de la source Math-Net.Ru
If an increasing sequence $\{n_m\}$ of positive integers and a modulus of continuity $\omega$ satisfy the condition $\sum_{m=1}^\infty\omega(1/n_m)/m\infty$, then it is known that the subsequence of partial sums $S_{n_m}(f,x)$ converges almost everywhere to $f(x)$ for any function $f\in H_1^\omega$. We show that this sufficient convergence condition is close to a necessary condition for a lacunary sequence $\{n_m\}$.
Keywords:
Fourier series, modulus of continuity.
Mots-clés : Lebesgue measure
Mots-clés : Lebesgue measure
@article{TIMM_2010_16_4_a18,
author = {S. V. Konyagin},
title = {Almost everywhere divergence of lacunary subsequences of partial sums of {Fourier} series},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {203--210},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a18/}
}
TY - JOUR AU - S. V. Konyagin TI - Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 203 EP - 210 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a18/ LA - ru ID - TIMM_2010_16_4_a18 ER -
S. V. Konyagin. Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 203-210. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a18/