A rate $L_p$-version for the Riesz criterion of the absolute convergence of trigonometric Fourier series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 193-202
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Rate versions of the Riesz criterion ($A=L_2(\mathbb T)*L_2(\mathbb T)$) are established in terms of best approximations ($A[\lambda]=E_2t[\lambda^{1/2}]*E_2[\lambda^{1/2}]$) and moduli of smoothness ($A[\omega]=H_2^l[\omega^{1/2}]*H_2^l[\omega^{1/2}]$) of the functions that compose the convolution, and conditions are found for $\lambda$ (necessary and sufficient in the case $1\le p2$ and sufficient in the case $2$) under which the equality$A[\lambda]=E_p[\lambda^{1/2}]*E_p[\lambda^{1/2}]$ is valid, where $\lambda\in M_0$, $\omega\in\Omega_l$, $l\in\mathbb N$.
Keywords: trigonometric Fourier series, absolute convergence, convolution of two functions, best approximation, modulus of smoothness, rate version of the Riesz criterion.
@article{TIMM_2010_16_4_a17,
     author = {N. A. Il'yasov},
     title = {A rate $L_p$-version for the {Riesz} criterion of the absolute convergence of trigonometric {Fourier} series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {193--202},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a17/}
}
TY  - JOUR
AU  - N. A. Il'yasov
TI  - A rate $L_p$-version for the Riesz criterion of the absolute convergence of trigonometric Fourier series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 193
EP  - 202
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a17/
LA  - ru
ID  - TIMM_2010_16_4_a17
ER  - 
%0 Journal Article
%A N. A. Il'yasov
%T A rate $L_p$-version for the Riesz criterion of the absolute convergence of trigonometric Fourier series
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 193-202
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a17/
%G ru
%F TIMM_2010_16_4_a17
N. A. Il'yasov. A rate $L_p$-version for the Riesz criterion of the absolute convergence of trigonometric Fourier series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 193-202. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a17/

[1] Zigmund A., Trigonometricheskie ryady: v 2 t., v. 1, Mir, M., 1965, 616 pp. ; т. 2, Мир, М., 540 с. | MR

[2] Edvards R., Ryady Fure v sovremennom izlozhenii: v 2 t., v. 1, Mir, M., 1985, 264 pp.; т. 2, Мир, М., 400 с.

[3] Hardy G.H., Littlewood J.E., “Solution of the Cesaro summability problem for power series and Fourier series”, Math. Z., 19:1 (1924), 67–96 | DOI | MR

[4] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR

[5] Kakhan Zh.-P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976, 208 pp.

[6] Ilyasov N.A., “To the M. Riesz theorem on absolute convergence of the trigonometric Fourier series”, Trans. NAS Azerbaijan. Ser. phys.-tech. and math. sci., 24:1 (2004), 113–120 | MR | Zbl

[7] Onneweer C.W., “On absolutely convergent Fourier series”, Arkiv für mat., 12:1 (1974), 51–58 | DOI | MR | Zbl

[8] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp.

[9] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 15:3 (1951), 219–242 | Zbl

[10] Stechkin S.B., “O teoreme Kolmogorova - Seliverstova”, Izv. AN SSSR. Ser. mat., 17:6 (1953), 499–512 | Zbl

[11] Timan A.F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_p$ ($1\le p\le\infty$)”, Mat. sb., 46:1 (1958), 125–132 | MR

[12] Kolyada V.I., “O sootnosheniyakh mezhdu nailuchshimi priblizheniyami v raznykh metrikakh”, Mat. zametki, 39:3 (1986), 383–387 | MR | Zbl

[13] Kolyada V.I., “Teoremy vlozheniya i neravenstva raznykh metrik dlya nailuchshikh priblizhenii”, Mat. sb., 102:2 (1977), 195–215 | MR | Zbl

[14] Ulyanov P.L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Mat. sb., 81:1 (1970), 104–131

[15] Ilyasov N.A., “A rate version of M. Riesz criterion on absolute convergence of trigonometric Fourier series in $L_p$-spaces”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, tez. dokl. Mezhdunar. konf., posvyasch. 100-letiyu akad. S.M. Nikolskogo, Izd-vo MIRAN, M., 2005, 374 pp.