Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 180-192

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a sharp Jackson inequality in $L_2(\mathbb R^d)$ with the weight $v_k(x)=\prod_{\alpha\in\mathbb R_+}|(\alpha,x)|^{2k(\alpha)}$ defined by the positive subsystem $R_+$ of a finite system of roots $R\subset\mathbb R^d$ and by a function $k(\alpha)\colon R\to\mathbb R_+$ invariant under the reflection group generated by $R$.
Keywords: reflection group, Dunkl transform, best approximation, modulus of continuity, Jackson inequality.
@article{TIMM_2010_16_4_a16,
     author = {A. V. Ivanov and V. I. Ivanov},
     title = {Dunkl theory and {Jackson} inequality in $L_2(\mathbb R^d)$ with power weight},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {180--192},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a16/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - V. I. Ivanov
TI  - Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 180
EP  - 192
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a16/
LA  - ru
ID  - TIMM_2010_16_4_a16
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A V. I. Ivanov
%T Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 180-192
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a16/
%G ru
%F TIMM_2010_16_4_a16
A. V. Ivanov; V. I. Ivanov. Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 180-192. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a16/