Voir la notice du chapitre de livre
@article{TIMM_2010_16_4_a16,
author = {A. V. Ivanov and V. I. Ivanov},
title = {Dunkl theory and {Jackson} inequality in $L_2(\mathbb R^d)$ with power weight},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {180--192},
year = {2010},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a16/}
}
TY - JOUR AU - A. V. Ivanov AU - V. I. Ivanov TI - Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 180 EP - 192 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a16/ LA - ru ID - TIMM_2010_16_4_a16 ER -
A. V. Ivanov; V. I. Ivanov. Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 180-192. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a16/
[1] Ibragimov N.I., Nasibov V.G., “Ob otsenke nailuchshego priblizheniya summiruemoi funktsii na veschestvennoi osi posredstvom tselykh funktsii konechnoi stepeni”, Dokl. AN SSSR, 194:5 (1970), 1013–1016 | MR | Zbl
[2] Popov V.Yu., “O nailuchshikh srednekvadraticheskikh priblizheniyakh tselymi funktsiyami eksponentsialnogo tipa”, Izv. vuzov. Matematika, 1972, no. 6, 65–73 | MR | Zbl
[3] Popov V.Yu., “O tochnykh konstantakh v neravenstvakh Dzheksona dlya nailuchshikh sfericheskikh srednekvadratichnykh priblizhenii”, Izv. vuzov. Matematika, 1981, no. 12, 67–78 | MR | Zbl
[4] Babenko A.G., “Tochnoe neravenstvo Dzheksona - Stechkina v prostranstve $L^2(\mathbb R^m)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, Ekaterinburg, 1998, 183–198 | MR | Zbl
[5] Moskovskii A.V., “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb R^n)$ i $L_{p,\lambda}(\mathbb R_+)$”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 4:1 (1997), 44–70 | MR
[6] Arestov V.V., Chernykh N.I., “On the $L_2$-approximation of periodic functions by trigonometric polynomials”, Approximation and functions spaces, proc. Interm. conf. (Gdansk, 1979), North-Holland, Amsterdam, 1981., 25–43 | MR
[7] Gorbachev D.V., “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa”, Mat. zametki, 68:2 (2000), 179–187 | MR | Zbl
[8] Berdysheva E.E., “Dve vzaimosvyazannye ekstremalnye zadachi dlya tselykh funktsii mnogikh peremennykh”, Mat. zametki, 66:3 (1999), 336–350 | MR | Zbl
[9] Rsler M., Dunkl Operators: Theory and Applications, Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 | MR
[10] Dunkl C.F., “Reflection groups and orthogonal polynomials on the sphere”, Math. Z., 197:1 (1988), 33–60 | DOI | MR | Zbl
[11] Dunkl C.F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl
[12] Dunkl C.F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43:6 (1991), 1213–1227 | DOI | MR | Zbl
[13] Dunkl C.F., “Hankel transforms associated to finite reflection groups”, Contemp. Math., 138 (1992), 123–138 | MR | Zbl
[14] Rsler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192:3 (1998), 519–542 | DOI | MR
[15] Rsler M., “Positivity of Dunkl's interwining operator”, Duke Math. J., 98:3 (1999), 445–463 | DOI | MR
[16] Rsler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | DOI | MR
[17] de Jeu M.F.E., “The Dunkl transform”, Invent. Math., 113:1 (1993), 147–162 | DOI | MR | Zbl
[18] de Jeu M.F.E., “Paley - Wiener theorems for the Dunkl transform”, Trans. Amer. Math. Soc., 358:10 (2006), 4225–4250 | DOI | MR | Zbl
[19] Trimche K., “Paley - Wiener theorems for the Dunkl transform and Dunkl translation operators”, Integral Transform. Spec. Funct., 13:1 (2002), 17–38 | DOI | MR
[20] Mejjaoli H., Trimche K., Real Paley - Wiener theorems for the Dunkl transform on $\mathbb R^d$, 2005, arXiv: math/0507211V1 [math. FA] 11 Ju
[21] Mejjaoli H., Trimche K., “Spectrum of functions for the Dunkl transform on $\mathbb R^d$”, Fract. Calc. Appl. Anal., 10:1 (2007), 19–38 | MR | Zbl
[22] Belkina E.S., Garmonicheskii analiz Fure - Danklya i priblizhenie funktsii, dis. ... kand. fiz.-mat. nauk, Petrozavodsk, 2008, 92 pp. | Zbl
[23] Chertova D.V., “Teoremy Dzheksona v prostranstve $L_2(\mathbb R)$ so stepennym vesom”, Izv. TulGU. Ser. Estestv. nauki, 2009, no. 3, 100–116
[24] Xu Y., “Funk - Hecke formula for orthogonal polynomials on spheres and on balls”, Bull. London Math. Soc., 32:4 (2000), 447–457 | DOI | MR | Zbl
[25] Levitan B.M., Razlozhenie po sobstvennym funktsiyam differentsialnykh uravnenii vtorogo poryadka, Gostekhizdat, M., 1950, 159 pp. | MR
[26] Naimark M.A., Lineinye differentsialnye operatory, 2-e izd., pererab. i dop., Nauka, M., 1969, 526 pp. | MR
[27] Thangavelu S., Xu Y., “Convolution operator and maximal function for Dunkl transform”, J. Anal. Math., 97 (2005), 25–55 | DOI | MR
[28] Gorbachev D.V., Izbrannye zadachi teorii funktsii i teorii priblizhenii i ikh prilozheniya, Izd-vo “Grif i K”, Tula, 2005, 152 pp.
[29] Yudin V.A., “Mnogomernaya teorema Dzheksona v $L_2$”, Mat. zametki, 29:2 (1981), 309–315 | MR | Zbl
[30] Chernykh N.I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, 1967, 71–74