Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 180-192
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a sharp Jackson inequality in $L_2(\mathbb R^d)$ with the weight $v_k(x)=\prod_{\alpha\in\mathbb R_+}|(\alpha,x)|^{2k(\alpha)}$ defined by the positive subsystem $R_+$ of a finite system of roots $R\subset\mathbb R^d$ and by a function $k(\alpha)\colon R\to\mathbb R_+$ invariant under the reflection group generated by $R$.
Keywords:
reflection group, Dunkl transform, best approximation, modulus of continuity, Jackson inequality.
@article{TIMM_2010_16_4_a16,
author = {A. V. Ivanov and V. I. Ivanov},
title = {Dunkl theory and {Jackson} inequality in $L_2(\mathbb R^d)$ with power weight},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {180--192},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a16/}
}
TY - JOUR AU - A. V. Ivanov AU - V. I. Ivanov TI - Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 180 EP - 192 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a16/ LA - ru ID - TIMM_2010_16_4_a16 ER -
A. V. Ivanov; V. I. Ivanov. Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 180-192. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a16/