Voir la notice du chapitre de livre
@article{TIMM_2010_16_4_a15,
author = {V. P. Zastavnyi},
title = {Estimates for sums of moduli of blocks from trigonometric {Fourier} series},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {166--179},
year = {2010},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a15/}
}
V. P. Zastavnyi. Estimates for sums of moduli of blocks from trigonometric Fourier series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 166-179. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a15/
[1] Akhiezer N.I., Lektsii ob integralnykh preobrazovaniyakh, Vischa shk.: Izd-vo Khark. un-ta, Kharkov, 1984, 120 pp.
[2] Belov A.S., “O summe modulei chlenov sgruppirovannogo trigonometricheskogo ryada s monotonnymi koeffitsientami”, Vestn. Ivanov. gos. un-ta. Ser. Biologiya. Khimiya. Fizika. Matematika, 2006, no. 6, 107–121
[3] Belov A.S., Telyakovskii S.A., “Usilenie teorem Dirikhle - Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40 | MR | Zbl
[4] Belov A.S., Telyakovskii S.A., “Usilenie teoremy Dirikhle - Zhordana o ryadakh Fure funktsii ogranichennoi variatsii”, Dokl. RAN, 412:5 (2007), 583–584 | MR
[5] Zigmund A., Trigonometricheskie ryady: v 2 t., v. 1, Mir, M., 1965, 616 pp.
[6] Zigmund A., Trigonometricheskie ryady: v 2 t., v. 2, Mir, M., 1965, 540 pp.
[7] Lib E., Loss M., Analiz, Nauch. kn., Novosibirsk, 1998, 276 pp.
[8] Popov A.Yu., Telyakovskii S.A., “K otsenkam chastnykh summ ryadov Fure funktsii ogranichennoi variatsii”, Izv. vuzov. Matematika, 2000, no. 1, 51–55
[9] Telyakovskii S.A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Teoriya priblizhenii. Garmonicheskii analiz, Tr. MIAN, 219, 1997, 378–386 | Zbl
[10] Telyakovskii S.A., “K voprosu o kharaktere skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Izv. vuzov. Matematika, 2010, no. 3, 48–51
[11] Telyakovskii S.A., “Nekotorye svoistva ryadov Fure funktsii ogranichennoi variatsii. II”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 2, Ekaterinburg, 2005, 168–174 | Zbl
[12] Telyakovskii S.A., “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1-2 (2004), 215–218 | MR | Zbl
[13] Trigub R.M., “A note on the paper of Telyakovskii Certain properties of Fourier series of functions with bounded variation”, East J. Approx., 13:1 (2007), 1–6 | MR
[14] Trigub R.M., Belinsky E.S., Fourier Analysis and Approximation of Functions, Kluwer-Springer, Boston; Dordrecht; London, 2004, 585 pp. | MR | Zbl
[15] Zastavnyi V.P., “On positive definiteness of some functions”, J. Multivariate Anal., 73 (2000), 55–81 | DOI | MR