Estimates for sums of moduli of blocks from trigonometric Fourier series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 166-179
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the following two problems. Problem 1: what conditions on a sequence of finite subsets $A_k\subset\mathbb Z$ and a sequence of functions $\lambda_k\colon A_k\to\mathbb C$ provide the existence of a number $C$ such that any function $f\in L_1$ satisfies the inequality $\|U_{\mathcal A,\Lambda}(f)\|_p\le C\|f\|_1,$and what is the exact constant in this inequality? Here, $U_{\mathcal A,\Lambda}(f)(x)=\sum_{k=1}^\infty\big|\sum_{m\in A_k}\lambda_k(m)c_m(f)e^{imx}\big|$, and $c_m(f)$ are Fourier coefficients of the function $f\in L_1$. Problem 2: what conditions on a sequence of finite subsets $A_k\subset\mathbb Z$ guarantee that the a function $\sum_{k=1}^\infty\big|\sum_{m\in A_k}c_m(h)e^{imx}\big|$ belongs to $L_p$ for every function $h$ of bounded variation?
Keywords: trigonometric series; Hardy-Littlewood theorems.
@article{TIMM_2010_16_4_a15,
     author = {V. P. Zastavnyi},
     title = {Estimates for sums of moduli of blocks from trigonometric {Fourier} series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {166--179},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a15/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - Estimates for sums of moduli of blocks from trigonometric Fourier series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 166
EP  - 179
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a15/
LA  - ru
ID  - TIMM_2010_16_4_a15
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T Estimates for sums of moduli of blocks from trigonometric Fourier series
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 166-179
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a15/
%G ru
%F TIMM_2010_16_4_a15
V. P. Zastavnyi. Estimates for sums of moduli of blocks from trigonometric Fourier series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 166-179. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a15/

[1] Akhiezer N.I., Lektsii ob integralnykh preobrazovaniyakh, Vischa shk.: Izd-vo Khark. un-ta, Kharkov, 1984, 120 pp.

[2] Belov A.S., “O summe modulei chlenov sgruppirovannogo trigonometricheskogo ryada s monotonnymi koeffitsientami”, Vestn. Ivanov. gos. un-ta. Ser. Biologiya. Khimiya. Fizika. Matematika, 2006, no. 6, 107–121

[3] Belov A.S., Telyakovskii S.A., “Usilenie teorem Dirikhle - Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40 | MR | Zbl

[4] Belov A.S., Telyakovskii S.A., “Usilenie teoremy Dirikhle - Zhordana o ryadakh Fure funktsii ogranichennoi variatsii”, Dokl. RAN, 412:5 (2007), 583–584 | MR

[5] Zigmund A., Trigonometricheskie ryady: v 2 t., v. 1, Mir, M., 1965, 616 pp.

[6] Zigmund A., Trigonometricheskie ryady: v 2 t., v. 2, Mir, M., 1965, 540 pp.

[7] Lib E., Loss M., Analiz, Nauch. kn., Novosibirsk, 1998, 276 pp.

[8] Popov A.Yu., Telyakovskii S.A., “K otsenkam chastnykh summ ryadov Fure funktsii ogranichennoi variatsii”, Izv. vuzov. Matematika, 2000, no. 1, 51–55

[9] Telyakovskii S.A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Teoriya priblizhenii. Garmonicheskii analiz, Tr. MIAN, 219, 1997, 378–386 | Zbl

[10] Telyakovskii S.A., “K voprosu o kharaktere skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Izv. vuzov. Matematika, 2010, no. 3, 48–51

[11] Telyakovskii S.A., “Nekotorye svoistva ryadov Fure funktsii ogranichennoi variatsii. II”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 2, Ekaterinburg, 2005, 168–174 | Zbl

[12] Telyakovskii S.A., “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1-2 (2004), 215–218 | MR | Zbl

[13] Trigub R.M., “A note on the paper of Telyakovskii Certain properties of Fourier series of functions with bounded variation”, East J. Approx., 13:1 (2007), 1–6 | MR

[14] Trigub R.M., Belinsky E.S., Fourier Analysis and Approximation of Functions, Kluwer-Springer, Boston; Dordrecht; London, 2004, 585 pp. | MR | Zbl

[15] Zastavnyi V.P., “On positive definiteness of some functions”, J. Multivariate Anal., 73 (2000), 55–81 | DOI | MR