Approximation by third-order local $\mathcal L$-splines with uniform nodes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 156-165
Voir la notice de l'article provenant de la source Math-Net.Ru
For a third-order linear differential operator of the form $\mathcal L_3=(D-\beta)(D-\gamma)(D-\delta)$ ($D$ is the differentiation symbol and $\beta,\gamma$, and $\delta$ are pairwise distinct real numbers) on the class of functions $W_\infty^{\mathcal L_2}$, where $\mathcal L_2=(D-\beta)(D-\gamma)$, a sharp pointwise estimate is found for the error of approximation by local noninterpolational $\mathcal L$- spines with uniform nodes corresponding to the operator $\mathcal L_3$; these splines were constructed by the authors earlier.
Keywords:
approximation, local $\mathcal L$-splines
Mots-clés : uniform nodes.
Mots-clés : uniform nodes.
@article{TIMM_2010_16_4_a14,
author = {P. G. Zhdanov and V. T. Shevaldin},
title = {Approximation by third-order local $\mathcal L$-splines with uniform nodes},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {156--165},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a14/}
}
TY - JOUR AU - P. G. Zhdanov AU - V. T. Shevaldin TI - Approximation by third-order local $\mathcal L$-splines with uniform nodes JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 156 EP - 165 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a14/ LA - ru ID - TIMM_2010_16_4_a14 ER -
P. G. Zhdanov; V. T. Shevaldin. Approximation by third-order local $\mathcal L$-splines with uniform nodes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 156-165. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a14/