Approximation by third-order local $\mathcal L$-splines with uniform nodes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 156-165
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a third-order linear differential operator of the form $\mathcal L_3=(D-\beta)(D-\gamma)(D-\delta)$ ($D$ is the differentiation symbol and $\beta,\gamma$, and $\delta$ are pairwise distinct real numbers) on the class of functions $W_\infty^{\mathcal L_2}$, where $\mathcal L_2=(D-\beta)(D-\gamma)$, a sharp pointwise estimate is found for the error of approximation by local noninterpolational $\mathcal L$- spines with uniform nodes corresponding to the operator $\mathcal L_3$; these splines were constructed by the authors earlier.
Keywords: approximation, local $\mathcal L$-splines
Mots-clés : uniform nodes.
@article{TIMM_2010_16_4_a14,
     author = {P. G. Zhdanov and V. T. Shevaldin},
     title = {Approximation by third-order local $\mathcal L$-splines with uniform nodes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {156--165},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a14/}
}
TY  - JOUR
AU  - P. G. Zhdanov
AU  - V. T. Shevaldin
TI  - Approximation by third-order local $\mathcal L$-splines with uniform nodes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 156
EP  - 165
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a14/
LA  - ru
ID  - TIMM_2010_16_4_a14
ER  - 
%0 Journal Article
%A P. G. Zhdanov
%A V. T. Shevaldin
%T Approximation by third-order local $\mathcal L$-splines with uniform nodes
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 156-165
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a14/
%G ru
%F TIMM_2010_16_4_a14
P. G. Zhdanov; V. T. Shevaldin. Approximation by third-order local $\mathcal L$-splines with uniform nodes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 156-165. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a14/

[1] Zhdanov P.G., Shevaldin V.T., “Formosokhranyayuschie lokalnye $L$-splainy, sootvetstvuyuschie proizvolnomu lineinomu differentsialnomu operatoru tretego poryadka”, Zbirnik prats In-tu matematiki NAN Ukraini, 5:1 (2008), 124–141 | Zbl

[2] Shevaldin V.T., “Approksimatsiya lokalnymi $L$-splainami, sootvetstvuyuschimi lineinomu differentsialnomu operatoru vtorogo poryadka”, Tr. In-ta matematiki i mekhaniki, 12, no. 2, UrO RAN, Ekaterinburg, 2006, 195–213

[3] Kostousov K.V., Shevaldin V.T., “Approximation by Local Exponential Splines”, Proc. Steklov Inst. Math. Suppl. 1, 2004, 147–157 | MR

[4] Subbotin Yu.N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 33:1 (1993), 996–1003 | MR | Zbl

[5] Shevaldina E.V., “Approksimatsiya lokalnymi eksponentsialnymi splainami s proizvolnymi uzlami”, Sib. zhurn. vychisl. matematiki, 9:4 (2006), 391–402 | Zbl

[6] Subbotin Yu.N., “Formosokhranyayuschaya eksponentsialnaya approksimatsiya”, Izv. vuzov. Matematika, 11 (2009), 53–60 | MR | Zbl