The integral approximation of the characteristic function of a spherical cap by algebraic polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 144-155
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the space $L(\mathbb S^2)$ on the unit sphere $\mathbb S^2$ of the three-dimensional Euclidean space $\mathbb R^3$, the problem on the best approximation of the characteristic function of a spherical cap by the set of algebraic polynomials of given (total) degree in three real variables with real coefficients is solved.
Keywords: Euclidean sphere, characteristic function of a spherical cap, approximation by algebraic polynomials.
@article{TIMM_2010_16_4_a13,
     author = {M. V. Deikalova},
     title = {The integral approximation of the characteristic function of a~spherical cap by algebraic polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {144--155},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a13/}
}
TY  - JOUR
AU  - M. V. Deikalova
TI  - The integral approximation of the characteristic function of a spherical cap by algebraic polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 144
EP  - 155
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a13/
LA  - ru
ID  - TIMM_2010_16_4_a13
ER  - 
%0 Journal Article
%A M. V. Deikalova
%T The integral approximation of the characteristic function of a spherical cap by algebraic polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 144-155
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a13/
%G ru
%F TIMM_2010_16_4_a13
M. V. Deikalova. The integral approximation of the characteristic function of a spherical cap by algebraic polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 144-155. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a13/

[1] Babenko A.G., Kryakin Yu.V., “O priblizhenii stupenchatykh funktsii trigonometricheskimi polinomami v integralnoi metrike”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 12:1 (2006), 27–56

[2] Babenko A.G., Kryakin Yu.V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 19–37

[3] Taikov L.V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, Uspekhi mat. nauk, 20:3 (1965), 205–211 | MR | Zbl

[4] Taikov L.V., “O nailuchshem priblizhenii yader Dirikhle”, Mat. zametki, 53:6 (1993), 116–121 | MR | Zbl

[5] Deikalova M.V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551 | MR | Zbl

[6] Daugavet I.K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977, 184 pp.

[7] Suetin P.K., Klassicheskie ortogonalnye mnogochleny, Nauka: Fizmatlit, M., 1979, 416 pp.

[8] Geronimus Ya.L., “Ob odnoi zadache F. Riesz'a i obobschennoi zadache Chebysheva - Korkina - Zolotareva”, Izv. AN SSSR. Ser. mat., 1939, no. 3, 279–288 | Zbl

[9] Markushevich A.I., Kratkii kurs teorii analiticheskikh funktsii, Nauka, M., 1966, 388 pp.

[10] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965, 616 pp.