The class of solenoidal planar-helical vector fields
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 128-143
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The class of solenoidal vector fields whose lines lie in planes parallel to $R^2$ is constructed by the method of mappings. This class exhausts the set of all smooth planar-helical solutions of Gromeka's problem in some domain $D\subset R^3$. In the case of domains $D$ with cylindrical boundaries whose generators are orthogonal to $R^2$, it is shown that the choice of a concrete solution from the constructed class is reduced to the Dirichlet problem with respect to two functions that are harmonically conjugate in $D^2=D\cap R^2$; i.e., Gromeka's nonlinear problem is reduced to linear boundary value problems. As an example, a concrete solution of the problem for an axially symmetric layer is presented. The solution is based on solving Dirichlet problems in the form of series uniformly convergent in $\overline D^2$ in terms of wavelet systems that form bases of various spaces of functions harmonic in $D^2$.
Keywords: scalar fields, vector fields, tensor fields, curl, wavelets
Mots-clés : Gromeka's problem.
@article{TIMM_2010_16_4_a12,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {The class of solenoidal planar-helical vector fields},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {128--143},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a12/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - The class of solenoidal planar-helical vector fields
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 128
EP  - 143
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a12/
LA  - ru
ID  - TIMM_2010_16_4_a12
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T The class of solenoidal planar-helical vector fields
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 128-143
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a12/
%G ru
%F TIMM_2010_16_4_a12
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. The class of solenoidal planar-helical vector fields. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 128-143. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a12/

[1] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Preobrazovanie, izmenyayuschee geometricheskoe stroenie vektornogo polya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2009, 111–121

[2] Gromeka I.S., Nekotorye sluchai dvizheniya neszhimaemoi zhidkosti, dis. ... d-ra fiz.-mat. nauk, Iz-vo AN SSSR, Kazan, 1881, 107 pp.; Собрание сочинений, Из-во АН СССР, М., 1952, 296 с.

[3] Korn G., Korn T., Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov), Nauka, M., 1977, 832 pp.

[4] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1988, 736 pp.

[5] Subbotin Yu.N., Chernykh N.I., “Garmonicheskie vspleski i asimptotika resheniya zadachi Dirikhle v kruge s malym otverstiem”, Mat. modelirovanie, 41:15 (2002), 17–30

[6] Subbotin Yu.N., Chernykh N.I., “Vspleski periodicheskie, garmonicheskie i analiticheskie v kruge s netsentralnym otverstiem”, Tr. Mezhdunar. letnei mat. shk. S.B. Stechkina po teorii funktsii, izd-vo TulGU, Tula, 2007, 129

[7] Meyer Y., Ondelettes et oprateurs. I. Ondelettes, Herman, Paris, 1990 | MR | Zbl

[8] Offin D. and Oskolkov K., “A note on orthonormal polynomial bases and wavelets”, Constr. Approx., 9 (1963), 319–325 | DOI | MR