On the construction of potential and transverse vortex vector fields with lines of zero curvature
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 117-127
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Classes of all smooth potential unit vector fields in the domains $R^3$, $R^3\setminus R^0$, $R^3\setminus R^1$ are constructed based on the method of mappings with account taken of the special geometric properties of such fields. Extensions of these classes to classes of all smooth nonunit potential and nonpotential (transverse vortex) fields with straight field lines are found. Their connection with smooth solutions of the corresponding systems of equations is discussed.
Keywords: scalar fields, vector fields, tensor fields, curl, potential and transverse vortex vector fields.
@article{TIMM_2010_16_4_a11,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {On the construction of potential and transverse vortex vector fields with lines of zero curvature},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {117--127},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a11/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - On the construction of potential and transverse vortex vector fields with lines of zero curvature
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 117
EP  - 127
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a11/
LA  - ru
ID  - TIMM_2010_16_4_a11
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T On the construction of potential and transverse vortex vector fields with lines of zero curvature
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 117-127
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a11/
%G ru
%F TIMM_2010_16_4_a11
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. On the construction of potential and transverse vortex vector fields with lines of zero curvature. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 117-127. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a11/

[1] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “K postroeniyu edinichnykh prodolno vikhrevykh vektornykh polei s pomoschyu gladkikh otobrazhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 82–91

[2] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Sposob postroeniya vektornykh polei s opredelennymi vikhrevymi svoistvami s pomoschyu gladkikh otobrazhenii”, Materialy Ufimskoi mezhdunar. matematicheskoi konf., posvyaschennoi pamyati A.F. Leonteva, 1, IMVTs, Ufa, 2007, 48–49

[3] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Preobrazovanie, izmenyayuschee geometricheskoe stroenie vektornogo polya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2008, 111–121 | MR | Zbl

[4] Aminov Yu.A., Geometriya vektornogo polya, Nauka, M., 1990, 208 pp.

[5] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Prodolno vikhrevye edinichnye vektornye polya iz klassa aksialno simmetrichnykh polei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 92–98

[6] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Klass vsekh gladkikh edinichnykh aksialno simmetrichnykh vektornykh polei, prodolno vikhrevykh v $R^3$”, Izv. Sarat. un-ta. Novaya ser. Matematika. Mekhanika. Informatika, 9:4 (2009), 11–23

[7] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Klass vsekh gladkikh edinichnykh vektornykh polei, potentsialnykh v $R^3$”, Tr. X Mezhdunar. nauch. konf. “Sovremennye problemy matematiki, mekhaniki, informatiki”, Izd-vo TulGU, Tula, 2009, 20–22

[8] Korn G., Korn T., Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov), Nauka, M., 1977, 832 pp.