Voir la notice du chapitre de livre
@article{TIMM_2010_16_4_a11,
author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
title = {On the construction of potential and transverse vortex vector fields with lines of zero curvature},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {117--127},
year = {2010},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a11/}
}
TY - JOUR AU - V. P. Vereshchagin AU - Yu. N. Subbotin AU - N. I. Chernykh TI - On the construction of potential and transverse vortex vector fields with lines of zero curvature JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 117 EP - 127 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a11/ LA - ru ID - TIMM_2010_16_4_a11 ER -
%0 Journal Article %A V. P. Vereshchagin %A Yu. N. Subbotin %A N. I. Chernykh %T On the construction of potential and transverse vortex vector fields with lines of zero curvature %J Trudy Instituta matematiki i mehaniki %D 2010 %P 117-127 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a11/ %G ru %F TIMM_2010_16_4_a11
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. On the construction of potential and transverse vortex vector fields with lines of zero curvature. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 117-127. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a11/
[1] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “K postroeniyu edinichnykh prodolno vikhrevykh vektornykh polei s pomoschyu gladkikh otobrazhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 82–91
[2] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Sposob postroeniya vektornykh polei s opredelennymi vikhrevymi svoistvami s pomoschyu gladkikh otobrazhenii”, Materialy Ufimskoi mezhdunar. matematicheskoi konf., posvyaschennoi pamyati A.F. Leonteva, 1, IMVTs, Ufa, 2007, 48–49
[3] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Preobrazovanie, izmenyayuschee geometricheskoe stroenie vektornogo polya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2008, 111–121 | MR | Zbl
[4] Aminov Yu.A., Geometriya vektornogo polya, Nauka, M., 1990, 208 pp.
[5] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Prodolno vikhrevye edinichnye vektornye polya iz klassa aksialno simmetrichnykh polei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 92–98
[6] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Klass vsekh gladkikh edinichnykh aksialno simmetrichnykh vektornykh polei, prodolno vikhrevykh v $R^3$”, Izv. Sarat. un-ta. Novaya ser. Matematika. Mekhanika. Informatika, 9:4 (2009), 11–23
[7] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Klass vsekh gladkikh edinichnykh vektornykh polei, potentsialnykh v $R^3$”, Tr. X Mezhdunar. nauch. konf. “Sovremennye problemy matematiki, mekhaniki, informatiki”, Izd-vo TulGU, Tula, 2009, 20–22
[8] Korn G., Korn T., Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov), Nauka, M., 1977, 832 pp.