Approximation of the Hardy–Sobolev class of functions analytic in a half-plane by entire functions of exponential type
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 18-30
Voir la notice du chapitre de livre
We study the value $\mathcal E_\sigma(H^p_n)_{H^p}$ of the best approximation in the norm of the Hardy space $H^p$ for $1\le p\le\infty$ of the Hardy–Sobolev class $H_n^p$ of functions analytic in a half-plane with bounded $H^p$-norm of the $n$th-order derivative by entire functions of exponential type not exceeding $\sigma$. The equality $\mathcal E_\sigma(H^p_n)_{H^p}=\sigma^{-n}$ is proved. A linear method providing the best approximation of the class is constructed.
Keywords:
Hardy class, approximation of functions, entire functions of exponential type.
@article{TIMM_2010_16_4_a1,
author = {R. R. Akopyan},
title = {Approximation of the {Hardy{\textendash}Sobolev} class of functions analytic in a~half-plane by entire functions of exponential type},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {18--30},
year = {2010},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a1/}
}
TY - JOUR AU - R. R. Akopyan TI - Approximation of the Hardy–Sobolev class of functions analytic in a half-plane by entire functions of exponential type JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 18 EP - 30 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a1/ LA - ru ID - TIMM_2010_16_4_a1 ER -
%0 Journal Article %A R. R. Akopyan %T Approximation of the Hardy–Sobolev class of functions analytic in a half-plane by entire functions of exponential type %J Trudy Instituta matematiki i mehaniki %D 2010 %P 18-30 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a1/ %G ru %F TIMM_2010_16_4_a1
R. R. Akopyan. Approximation of the Hardy–Sobolev class of functions analytic in a half-plane by entire functions of exponential type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 18-30. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a1/
[1] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 406 pp. | MR | Zbl
[2] Ibragimov I.I., Teoriya priblizheniya tselymi funktsiyami, ELM, Baku, 1979, 465 pp. | MR
[3] Babenko K.I., “O nailuchshikh priblizheniyakh odnogo klassa analiticheskikh funktsii”, Izv. AN SSSR. Ser. mat., 22:5 (1958), 631–640 | MR | Zbl
[4] Taikov L.V., “O nailuchshem priblizhenii v srednem nekotorykh klassov analiticheskikh funktsii”, Mat. zametki, 1:2 (1967), 155–162 | MR | Zbl
[5] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984, 368 pp. | MR
[6] Sveshnikov A.G., Tikhonov A.N., Teoriya funktsii kompleksnoi peremennoi, Nauka, M., 1970, 304 pp. | MR