On strongly regular graphs with eigenvalue~2 and their extensions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 105-116
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal F$ be a class of graphs. A graph $\Gamma$ is called locally $\mathcal F$-graph, if the neighbourhood of each vertex $a$ of $\Gamma$ belongs $\mathcal F$. In the paper it is described the class $\mathcal Q$ of strongly regular graphs with eigenvalue 2 and classified graphs in which the neighbourhood of each vertex is strongly regular with parameters (81,20,1,6).
Keywords:
strongly regular graph, graph spectrum, locally $\mathcal F$ graphs.
@article{TIMM_2010_16_3_a9,
author = {V. V. Kabanov and A. A. Makhnev and D. V. Paduchikh},
title = {On strongly regular graphs with eigenvalue~2 and their extensions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {105--116},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/}
}
TY - JOUR AU - V. V. Kabanov AU - A. A. Makhnev AU - D. V. Paduchikh TI - On strongly regular graphs with eigenvalue~2 and their extensions JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 105 EP - 116 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/ LA - ru ID - TIMM_2010_16_3_a9 ER -
%0 Journal Article %A V. V. Kabanov %A A. A. Makhnev %A D. V. Paduchikh %T On strongly regular graphs with eigenvalue~2 and their extensions %J Trudy Instituta matematiki i mehaniki %D 2010 %P 105-116 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/ %G ru %F TIMM_2010_16_3_a9
V. V. Kabanov; A. A. Makhnev; D. V. Paduchikh. On strongly regular graphs with eigenvalue~2 and their extensions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 105-116. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/