On strongly regular graphs with eigenvalue~2 and their extensions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 105-116

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal F$ be a class of graphs. A graph $\Gamma$ is called locally $\mathcal F$-graph, if the neighbourhood of each vertex $a$ of $\Gamma$ belongs $\mathcal F$. In the paper it is described the class $\mathcal Q$ of strongly regular graphs with eigenvalue 2 and classified graphs in which the neighbourhood of each vertex is strongly regular with parameters (81,20,1,6).
Keywords: strongly regular graph, graph spectrum, locally $\mathcal F$ graphs.
@article{TIMM_2010_16_3_a9,
     author = {V. V. Kabanov and A. A. Makhnev and D. V. Paduchikh},
     title = {On strongly regular graphs with eigenvalue~2 and their extensions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {105--116},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/}
}
TY  - JOUR
AU  - V. V. Kabanov
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - On strongly regular graphs with eigenvalue~2 and their extensions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 105
EP  - 116
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/
LA  - ru
ID  - TIMM_2010_16_3_a9
ER  - 
%0 Journal Article
%A V. V. Kabanov
%A A. A. Makhnev
%A D. V. Paduchikh
%T On strongly regular graphs with eigenvalue~2 and their extensions
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 105-116
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/
%G ru
%F TIMM_2010_16_3_a9
V. V. Kabanov; A. A. Makhnev; D. V. Paduchikh. On strongly regular graphs with eigenvalue~2 and their extensions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 105-116. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/