On strongly regular graphs with eigenvalue 2 and their extensions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 105-116
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathcal F$ be a class of graphs. A graph $\Gamma$ is called locally $\mathcal F$-graph, if the neighbourhood of each vertex $a$ of $\Gamma$ belongs $\mathcal F$. In the paper it is described the class $\mathcal Q$ of strongly regular graphs with eigenvalue 2 and classified graphs in which the neighbourhood of each vertex is strongly regular with parameters (81,20,1,6).
Keywords: strongly regular graph, graph spectrum, locally $\mathcal F$ graphs.
@article{TIMM_2010_16_3_a9,
     author = {V. V. Kabanov and A. A. Makhnev and D. V. Paduchikh},
     title = {On strongly regular graphs with eigenvalue~2 and their extensions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {105--116},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/}
}
TY  - JOUR
AU  - V. V. Kabanov
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - On strongly regular graphs with eigenvalue 2 and their extensions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 105
EP  - 116
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/
LA  - ru
ID  - TIMM_2010_16_3_a9
ER  - 
%0 Journal Article
%A V. V. Kabanov
%A A. A. Makhnev
%A D. V. Paduchikh
%T On strongly regular graphs with eigenvalue 2 and their extensions
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 105-116
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/
%G ru
%F TIMM_2010_16_3_a9
V. V. Kabanov; A. A. Makhnev; D. V. Paduchikh. On strongly regular graphs with eigenvalue 2 and their extensions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 105-116. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a9/

[1] Gutnova A. K., Makhnev A. A., “O grafakh, v kotorykh okrestnosti vershin yavlyayutsya psevdogeometricheskimi grafami dlya $pG_{s-2}(s,t)$”, Dokl. RAN. Matematika, 431:3 (2010), 301–305 | MR | Zbl

[2] Seidel J., “Strongly regular graphs with (1,1,0) adjacency matrix having eigenvalue 3”, Lin. Algebra and Appl., 1 (1968), 281–298 | DOI | MR | Zbl

[3] Neumaier A., “Strongly regular graphs with smallest eigenvalue $m$”, Arch. Math., 33 (1979), 392–400 | DOI | MR

[4] Makhnev A. A., “Chastichnye geometrii i ikh rasshireniya”, Uspekhi mat. nauk, 54:5 (1999), 25–76 | MR | Zbl

[5] Makhnev A. A., “O silno regulyarnykh grafakh s $k=2$ i ikh rasshireniyakh”, Sib. mat. zhurn., 43:3 (2002), 609–619 | MR

[6] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[7] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl

[8] Gavrilyuk A. L., Makhnev A. A., “Distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Dokl. RAN. Matematika, 428:2 (2009), 157–160 | Zbl

[9] Gavrilyuk A. L., Makhnev A. A., Paduchikh D. V., “O grafakh, v kotorykh okrestnosti vershin izomorfny grafu Gevirttsa”, Dokl. RAN. Matematika, 428:3 (2009), 300–304 | MR | Zbl

[10] Blokhuis A., Brouwer A. E., “Locally 4-by-4 grid graphs”, J. Graph Theory, 13 (1989), 229–244 | DOI | MR | Zbl

[11] Makhnev A. A., Paduchikh D. V., “Lokalno Shrikkhande grafy i ikh avtomorfizmy”, Sib. mat. zhurn., 39:5 (1998), 1085–1097 | MR | Zbl

[12] Brouwer A. E., Haemers W. H., Spectra of graphs (course notes) http://www.win.tue.nl/~aeb/preprints.html

[13] The GAP Group. GAP – groups, algorithms, and programming, Ver. 4.4.12, 2008 http://www.gap-system.org