On automorphisms of 4-isoregular graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 78-87
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Graph $\Gamma$ is called t-isoregular, if for each $i\le t$ the number of common neighbours of $i$-vertex subgraph $\Delta$ depends only on the isomorphism type of $\Delta$. It is known that 4-isoregular graph is a regular complete multipartite graph, pentagon, $3\times3$-grid or pseudo-geometric graph for for $pG_r(2r,(2r-1)(r+1)^2)$ (or the complement of such a graph). In this paper it is obtained formulas for the character values of automorphisms of strongly regular subgraphs of pseudo-geometric graph $\Gamma$ for $pG_r(2r,(2r-1)(r+1)^2)$. It is investigated the case, when a subgraph of fixed points of automorphism of prime order of $\Gamma$ is empty, clique or coclique.
Keywords: strongly regular graph, automorphism of graph.
@article{TIMM_2010_16_3_a6,
     author = {A. H. Zhurtov and A. A. Makhnev and M. S. Nirova},
     title = {On automorphisms of 4-isoregular graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {78--87},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a6/}
}
TY  - JOUR
AU  - A. H. Zhurtov
AU  - A. A. Makhnev
AU  - M. S. Nirova
TI  - On automorphisms of 4-isoregular graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 78
EP  - 87
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a6/
LA  - ru
ID  - TIMM_2010_16_3_a6
ER  - 
%0 Journal Article
%A A. H. Zhurtov
%A A. A. Makhnev
%A M. S. Nirova
%T On automorphisms of 4-isoregular graphs
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 78-87
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a6/
%G ru
%F TIMM_2010_16_3_a6
A. H. Zhurtov; A. A. Makhnev; M. S. Nirova. On automorphisms of 4-isoregular graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 78-87. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a6/

[1] Gardiner A., “Homogeneous graphs”, J. Comb. Theor., 20 (1976), 94–102 | DOI | MR | Zbl

[2] Cameron P., Van Lint J., Designs, graphs, codes and their links, London Math. Soc. Student Texts, 22, Cambridge Univ. Press, Cambridge, 1991, 240 pp. | MR | Zbl

[3] Makhnev A. A., “O nesuschestvovanii silno regulyarnykh grafov s parametrami (486,165,36,66)”, Ukrain. mat. zhurn., 54:7 (2002), 941–949 | MR | Zbl

[4] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[5] Cameron P., Goethals J., Seidel J., “Strongly regular graphs having strongly regular subconstituents”, J. Algebra, 55 (1978), 257–280 | DOI | MR | Zbl

[6] Cameron P., Permutation groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl