Methods for solving systems of linear and convex inequalities based on the Fej\'er principle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 67-77
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the technique of constructing Fejér contraction mappings used in iterative processes of solving linear and convex systems of inequalities as well as accompanying optimization problems. The general approach is based on the notion of $M$-Fejér step "$p\to q$" defined by the property
$$
|q-y||p-y|,\qquad\forall y\in M.
$$
This property (postulate) assumes that $p\not\in\overline{\operatorname{conv}M}$ with sufficiently arbitrary $q\not=\varnothing$. Some of the problems considered in the paper are illustrated by schemes reflecting the analytics of these problems.
Keywords:
linear and convex programming, contraction mappings, fixed point set, projection operator.
Mots-clés : Fejér processes
Mots-clés : Fejér processes
@article{TIMM_2010_16_3_a5,
author = {I. I. Eremin},
title = {Methods for solving systems of linear and convex inequalities based on the {Fej\'er} principle},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {67--77},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a5/}
}
TY - JOUR AU - I. I. Eremin TI - Methods for solving systems of linear and convex inequalities based on the Fej\'er principle JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 67 EP - 77 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a5/ LA - ru ID - TIMM_2010_16_3_a5 ER -
I. I. Eremin. Methods for solving systems of linear and convex inequalities based on the Fej\'er principle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 67-77. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a5/