Methods for solving systems of linear and convex inequalities based on the Fejér principle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 67-77
Voir la notice du chapitre de livre
We consider the technique of constructing Fejér contraction mappings used in iterative processes of solving linear and convex systems of inequalities as well as accompanying optimization problems. The general approach is based on the notion of $M$-Fejér step "$p\to q$" defined by the property $$ |q-y||p-y|,\qquad\forall y\in M. $$ This property (postulate) assumes that $p\not\in\overline{\operatorname{conv}M}$ with sufficiently arbitrary $q\not=\varnothing$. Some of the problems considered in the paper are illustrated by schemes reflecting the analytics of these problems.
Keywords:
linear and convex programming, contraction mappings, fixed point set, projection operator.
Mots-clés : Fejér processes
Mots-clés : Fejér processes
@article{TIMM_2010_16_3_a5,
author = {I. I. Eremin},
title = {Methods for solving systems of linear and convex inequalities based on the {Fej\'er} principle},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {67--77},
year = {2010},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a5/}
}
I. I. Eremin. Methods for solving systems of linear and convex inequalities based on the Fejér principle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 67-77. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a5/
[1] Fejr L., “ber die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen”, Math. Ann., 85:1 (1922), 41–48 | DOI | MR
[2] Eremin I. I., Teoriya lineinoi optimizatsii, izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 312 pp.
[3] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa (teoriya i prilozheniya), NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2005, 199 pp. | MR
[4] Eremin I. I., “Feierovskie metody silnoi otdelimosti vypuklykh poliedralnykh mnozhestv”, Izv. vuzov. Matematika, 2006, no. 12, 33–43 | MR