Classification of spaces of Baire functions on ordinal intervals
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 61-66
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A complete linear homeomorphic classification of the spaces $B_p[1,\alpha]$ of all Baire functions $f\colon[1,\alpha]\to\mathbb R$ that are defined on ordinal intervals $[1,\alpha]$ and are equipped with the topology of pointwise convergence is given. Since any Baire function on an ordinal interval belongs to the first Baire class, our classification is also a classification of spaces of functions of the first Baire class. A similar classification is given for spaces of two-valued Baire functions $f\colon[1,\alpha]\to\{0,1\}$.
Keywords: spaces of Baire functions, ordinals, topology of pointwise convergence, linear homeomorphisms
Mots-clés : classification.
@article{TIMM_2010_16_3_a4,
     author = {L. V. Genze and S. P. Gul'ko and T. E. Khmyleva},
     title = {Classification of spaces of {Baire} functions on ordinal intervals},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {61--66},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a4/}
}
TY  - JOUR
AU  - L. V. Genze
AU  - S. P. Gul'ko
AU  - T. E. Khmyleva
TI  - Classification of spaces of Baire functions on ordinal intervals
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 61
EP  - 66
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a4/
LA  - ru
ID  - TIMM_2010_16_3_a4
ER  - 
%0 Journal Article
%A L. V. Genze
%A S. P. Gul'ko
%A T. E. Khmyleva
%T Classification of spaces of Baire functions on ordinal intervals
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 61-66
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a4/
%G ru
%F TIMM_2010_16_3_a4
L. V. Genze; S. P. Gul'ko; T. E. Khmyleva. Classification of spaces of Baire functions on ordinal intervals. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 61-66. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a4/

[1] Khmylëva T. E., Genze L. V., “Prostranstva funktsii pervogo klassa Bera, nadelennye topologiei potochechnoi skhodimosti, i ikh $l$-ekvivalentnost”, Vest. Tomskogo gos. un-ta. Matematika i mekhanika, 2008, no. 3(4), 35–41

[2] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[3] Gulko S. P., “Prostranstva nepreryvnykh funktsii na ordinalakh i ultrafiltrakh”, Mat. zametki, 47:4 (1990), 26–34 | MR | Zbl

[4] van Douwen E. K., Simultaneous extension of continuous function, Ph. D. Thesis, Academische Pers, Amsterdam, 1975, 99 pp.