Classification of spaces of Baire functions on ordinal intervals
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 61-66
Voir la notice du chapitre de livre
A complete linear homeomorphic classification of the spaces $B_p[1,\alpha]$ of all Baire functions $f\colon[1,\alpha]\to\mathbb R$ that are defined on ordinal intervals $[1,\alpha]$ and are equipped with the topology of pointwise convergence is given. Since any Baire function on an ordinal interval belongs to the first Baire class, our classification is also a classification of spaces of functions of the first Baire class. A similar classification is given for spaces of two-valued Baire functions $f\colon[1,\alpha]\to\{0,1\}$.
Keywords:
spaces of Baire functions, ordinals, topology of pointwise convergence, linear homeomorphisms
Mots-clés : classification.
Mots-clés : classification.
@article{TIMM_2010_16_3_a4,
author = {L. V. Genze and S. P. Gul'ko and T. E. Khmyleva},
title = {Classification of spaces of {Baire} functions on ordinal intervals},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {61--66},
year = {2010},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a4/}
}
TY - JOUR AU - L. V. Genze AU - S. P. Gul'ko AU - T. E. Khmyleva TI - Classification of spaces of Baire functions on ordinal intervals JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 61 EP - 66 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a4/ LA - ru ID - TIMM_2010_16_3_a4 ER -
L. V. Genze; S. P. Gul'ko; T. E. Khmyleva. Classification of spaces of Baire functions on ordinal intervals. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 61-66. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a4/
[1] Khmylëva T. E., Genze L. V., “Prostranstva funktsii pervogo klassa Bera, nadelennye topologiei potochechnoi skhodimosti, i ikh $l$-ekvivalentnost”, Vest. Tomskogo gos. un-ta. Matematika i mekhanika, 2008, no. 3(4), 35–41
[2] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR
[3] Gulko S. P., “Prostranstva nepreryvnykh funktsii na ordinalakh i ultrafiltrakh”, Mat. zametki, 47:4 (1990), 26–34 | MR | Zbl
[4] van Douwen E. K., Simultaneous extension of continuous function, Ph. D. Thesis, Academische Pers, Amsterdam, 1975, 99 pp.