On the structure of finite groups isospectral to an alternating group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 45-60
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that every finite group isospectral to an alternating group $A_n$ of degree $n$ greater than 21 has a chief factor isomorphic to an alternating group $A_k$, where $k\le n$ and the half-interval $(k,n]$ contains no primes.
Keywords: finite groups, alternating groups, spectrum of a group, isospectral groups, chief factors.
@article{TIMM_2010_16_3_a3,
     author = {I. A. Vakula},
     title = {On the structure of finite groups isospectral to an alternating group},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {45--60},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a3/}
}
TY  - JOUR
AU  - I. A. Vakula
TI  - On the structure of finite groups isospectral to an alternating group
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 45
EP  - 60
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a3/
LA  - ru
ID  - TIMM_2010_16_3_a3
ER  - 
%0 Journal Article
%A I. A. Vakula
%T On the structure of finite groups isospectral to an alternating group
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 45-60
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a3/
%G ru
%F TIMM_2010_16_3_a3
I. A. Vakula. On the structure of finite groups isospectral to an alternating group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 45-60. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a3/

[1] Mazurov V. D., “Gruppy s zadannym spektrom”, Izv. Ural. gos. un-ta. Matematika i mekhanika, 36:7 (2005), 119–138 | MR | Zbl

[2] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[3] Kondratev A. S., Mazurov V. D., “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. mat. zhurn., 41:2 (2000), 359–369 | MR | Zbl

[4] Zavarnitsin A. V., “Raspoznavanie po mnozhestvu poryadkov elementov znakoperemennykh grupp stepeni $r+1$ i $r+2$ i gruppy stepeni 16”, Algebra i logika, 39:6 (2000), 648–661 | MR | Zbl

[5] Zavarnitsin A. V., Mazurov V. D., “O poryadkakh elementov v nakrytiyakh simmetricheskikh i znakoperemennykh grupp”, Algebra i logika, 38:3 (1999), 296–315 | MR

[6] Vasilev A. V., “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami ee grafa prostykh chisel”, Sib. mat. zhurn., 46:3 (2005), 511–522 | MR | Zbl

[7] Rohrbach H., Weis J., “Zum finiten Fall des Bertranschen Postulates”, J. Reine Angew. Math., 214:5 (1964), 432–440 | MR | Zbl

[8] The GAP Group. GAP – Groups, algorithms, and programming, Vers. 4.4.2 http://www.gap-system.org

[9] Tchebichef P., “Memoire sur nombres premiers”, J. de Math. Pures et Appl. 1-re Srie, XVII (1852), 366–390

[10] Huppert B., Blackburn N., Finite Groups, v. II, Springer-Verlag, Berlin–New York, 1982, 531 pp. | MR | Zbl

[11] Zsigmondy K., “Zur Theorie Potenzreste”, Monatsh. Math. und Phys., 3 (1892), 265–284 | DOI | MR

[12] Busarkin V. M., Gorchakov Yu. M., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968, 113 pp. | MR

[13] Kondratev A. S., “Kvaziraspoznavaemost po mnozhestvu poryadkov elementov grupp $E_6(q)$ i $^2E_6(q)$”, Sib. mat. zhurn., 48:6 (2007), 1250–1271 | MR | Zbl

[14] Conway J. H. [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[15] Carter R., Simple groups of Lie type, Pure and Applied Mathematics, 28, Wiley, London, 1972, 331 pp. | MR

[16] Vasilev A. V., Vdovin E. P., “Kriterii smezhnosti v grafe prostykh chisel prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[17] Vasiliev A. V., Vdovin E. P., Cocliques of maximal size in the prime graph of a finite simple group, Preprint No 225, In-t matematiki SO RAN, Novosibirsk, 2009, arXiv: 0905.1164v1