On the structure of finite groups isospectral to an alternating group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 45-60
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that every finite group isospectral to an alternating group $A_n$ of degree $n$ greater than 21 has a chief factor isomorphic to an alternating group $A_k$, where $k\le n$ and the half-interval $(k,n]$ contains no primes.
Keywords:
finite groups, alternating groups, spectrum of a group, isospectral groups, chief factors.
@article{TIMM_2010_16_3_a3,
author = {I. A. Vakula},
title = {On the structure of finite groups isospectral to an alternating group},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {45--60},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a3/}
}
I. A. Vakula. On the structure of finite groups isospectral to an alternating group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 45-60. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a3/