Voir la notice du chapitre de livre
@article{TIMM_2010_16_3_a28,
author = {M. Yu. Khachai},
title = {Computational complexity of combinatorial optimization problems induced by collective procedures in machine learning},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {276--284},
year = {2010},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a28/}
}
TY - JOUR AU - M. Yu. Khachai TI - Computational complexity of combinatorial optimization problems induced by collective procedures in machine learning JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 276 EP - 284 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a28/ LA - ru ID - TIMM_2010_16_3_a28 ER -
%0 Journal Article %A M. Yu. Khachai %T Computational complexity of combinatorial optimization problems induced by collective procedures in machine learning %J Trudy Instituta matematiki i mehaniki %D 2010 %P 276-284 %V 16 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a28/ %G ru %F TIMM_2010_16_3_a28
M. Yu. Khachai. Computational complexity of combinatorial optimization problems induced by collective procedures in machine learning. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 276-284. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a28/
[1] Borovkov A. A., Matematicheskaya statistika, Nauka, Novosibirsk, 1997, 772 pp. | MR | Zbl
[2] Vapnik V. N., Statistical learning theory, Wiley, New York, 1998, 740 pp. | MR | Zbl
[3] Blum A., Rivest R. L., “Training a 3-node neural network is $NP$-complete”, Advances in neural information processing systems, ed. D. S. Touretzky, M. Kaufmann, San Mateo, 1988, 830 pp.
[4] Lin J. H., Vitter J. S., “Complexity results on learning by neural nets”, Machine Learning, 6 (1991), 211–230
[5] Khachay M., “On the computational complexity of the minimum committee problem”, J. Math. Model. Algor., 6:4 (2007), 547–561 | DOI | MR | Zbl
[6] Khachai M., Poberii M., “Complexity and approximability of committee polyhedral separability of sets in general position”, Informatica, 20:2 (2009), 217–234 | MR
[7] Dinur I., “The PCP theorem by gap amplification”, J. of the ACM, 54:3 (2007), Art. 12, 44 pp. | DOI | MR
[8] Mazurov Vl. D., “Komitety sistem neravenstv i zadacha raspoznavaniya obrazov”, Kibernetika, 1971, no. 3, 140–146 | MR | Zbl
[9] Khachai M., Mazurov V., Rybin A., “Committee construction for solving problems of selection, diagnostics, and prediction”, Proc. Steklov Inst. Math., 2002, S67–S101 | MR | Zbl
[10] Khachai M., “Computational and approximational complexity of combinatorial problems related to the committee polyhedral separability of finite sets”, Pattern Recognition and Image Analysis, 18:2 (2008), 237–242 | DOI | MR
[11] Megiddo N., Tamir A., “On the complexity of locating linear facilities in the plane”, Oper. Res. Let., 1:5 (1982), 194–197 | DOI | MR | Zbl
[12] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986, 384 pp. | MR
[13] Johnson D. S., Preparata F. P., “The densest hemisphere problem”, Theor. Comput. Sci., 1978, no. 6, 93–107 | DOI | MR | Zbl
[14] Khachai M. Yu., “Ob odnoi igre s prirodoi, svyazannoi s prinyatiem reshenii bolshinstvom golosov”, Zhurn. vychisl. matematiki i mat. fiziki, 42:10 (2002), 1609–1616 | MR | Zbl