On one general approach to the optimal correction of improper convex programming problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 265-275
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method of optimal correction of improper convex programming problems is suggested, which is based on using a Lagrange function regularized in both variables. This approach is independent of the kind of impropriety of the original problem. Conditions are formulated and estimates are established for the convergence of the method.
Keywords: convex programming, improper problem, regularized Lagrange function.
Mots-clés : optimal correction
@article{TIMM_2010_16_3_a27,
     author = {V. D. Skarin},
     title = {On one general approach to the optimal correction of improper convex programming problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {265--275},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a27/}
}
TY  - JOUR
AU  - V. D. Skarin
TI  - On one general approach to the optimal correction of improper convex programming problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 265
EP  - 275
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a27/
LA  - ru
ID  - TIMM_2010_16_3_a27
ER  - 
%0 Journal Article
%A V. D. Skarin
%T On one general approach to the optimal correction of improper convex programming problems
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 265-275
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a27/
%G ru
%F TIMM_2010_16_3_a27
V. D. Skarin. On one general approach to the optimal correction of improper convex programming problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 265-275. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a27/

[1] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[2] Skarin V. D., “O metode regulyarizatsii dlya protivorechivykh zadach vypuklogo programmirovaniya”, Izv. vuzov. Matematika, 1995, no. 12, 81–88 | MR | Zbl

[3] Popov L. D., “Primenenie modifitsirovannogo prox-metoda dlya optimalnoi korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 3, Ekaterinburg, 1995, 261–266 | MR | Zbl

[4] Skarin V. D., “Ob odnom universalnom podkhode k optimalnoi korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Metody optimizatsii i ikh prilozheniya, Tr. XI mezhdunar. Baikalskoi shk.-seminara, v. 1, SEI SO RAN, Irkutsk, 1998, 56–59

[5] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp. | MR

[6] Skarin V. D., “O nekotorykh regulyariziruyuschikh i approksimiruyuschikh svoistvakh metoda shtrafnykh funktsii v vypuklom programmirovanii”, Optimizatsiya, upravlenie, intellekt, 2005, no. 1(9), 107–128

[7] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[8] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[9] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp. | MR