Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 217-226
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The potential of the combined application of interior and exterior penalty functions in finding generalized (approximation) solutions to improper problems of linear and convex programming of the first kind is investigated. Algorithm schemes, convergence theorems, and results of numerical experiments are presented.
Keywords: improper problems of mathematical programming, optimal correction procedures, penalty function method
Mots-clés : central pass.
@article{TIMM_2010_16_3_a23,
     author = {L. D. Popov},
     title = {Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {217--226},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a23/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 217
EP  - 226
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a23/
LA  - ru
ID  - TIMM_2010_16_3_a23
ER  - 
%0 Journal Article
%A L. D. Popov
%T Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 217-226
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a23/
%G ru
%F TIMM_2010_16_3_a23
L. D. Popov. Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 217-226. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a23/

[1] Eremin I. I., “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, Dokl. AN SSSR, 256:2 (1981), 272–276 | MR | Zbl

[2] Eremin I. I., Mazurov Vl. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[3] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR | Zbl

[4] Issledovaniya po nesobstvennym zadacham optimizatsii, Sb. statei, UrO AN SSSR, Sverdlovsk, 1988, 78 pp.

[5] Morozov V. A., “O psevdoresheniyakh”, Zhurn. vychisl. matematiki i mat. fiziki, 9:6 (1969), 1387–1391 | Zbl

[6] Kochikov I. V., Matvienko A. N., Yagola A. G., “Obobschennyi printsip nevyazki dlya resheniya nesovmestnykh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 24:7 (1984), 1087–1090 | MR | Zbl

[7] Parametricheskaya optimizatsiya i metody approksimatsii nesobstvennykh zadach matematicheskogo programmirovaniya, Sb. statei, UNTs AN SSSR, Sverdlovsk, 1985, 136 pp. | MR

[8] Neregulyarnaya dvoistvennost v matematicheskom programmirovanii, Sb. statei, UrO AN SSSR, Sverdlovsk, 1990, 78 pp.

[9] Popov L. D., “Primenenie modifitsirovannogo prox-metoda dlya optimalnoi korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 3, Ekaterinburg, 1995, 261–266 | MR | Zbl

[10] Popov L. D., “Simmetricheskie sistemy i feierovskie protsessy dlya nesobstvennykh zadach lineinogo programmirovaniya”, Metody optimizatsii i ikh prilozheniya, Tr. XIII mezhdunar. Baikalskoi shk.-seminara, v. 1, ISEM SO RAN, Irkutsk, 2005, 141–146

[11] Zhadan V. G., Chislennye metody lineinogo i nelineinogo programmirovaniya. Vspomogatelnye funktsii v uslovnoi optimizatsii, VTs RAN, M., 2002, 160 pp. | MR

[12] Skarin V. D., “O metode barernykh funktsii i algoritmakh korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 115–128 | Zbl

[13] Fiakko A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972, 240 pp. | MR | Zbl

[14] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973, 472 pp.

[15] Roos C., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization, John Wiley Sons, Chichester, 1997, 484 pp. | MR