Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 217-226
Voir la notice de l'article provenant de la source Math-Net.Ru
The potential of the combined application of interior and exterior penalty functions in finding generalized (approximation) solutions to improper problems of linear and convex programming of the first kind is investigated. Algorithm schemes, convergence theorems, and results of numerical experiments are presented.
Keywords:
improper problems of mathematical programming, optimal correction procedures, penalty function method
Mots-clés : central pass.
Mots-clés : central pass.
@article{TIMM_2010_16_3_a23,
author = {L. D. Popov},
title = {Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {217--226},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a23/}
}
TY - JOUR AU - L. D. Popov TI - Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 217 EP - 226 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a23/ LA - ru ID - TIMM_2010_16_3_a23 ER -
%0 Journal Article %A L. D. Popov %T Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind %J Trudy Instituta matematiki i mehaniki %D 2010 %P 217-226 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a23/ %G ru %F TIMM_2010_16_3_a23
L. D. Popov. Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 217-226. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a23/