On the belonging of the problems MIN-PC and MASC-GP$(n)$ to the class of MAX-SNP-hard problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 210-216
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that the problem on the minimal covering of a finite number of points in a plane by a set of straight lines (MIN-PC) and the problem on the minimal affine separating committee formulated in a space of fixed dimension (MASC-GP$(n)$) are NP-hard in the strong sense. We show that these problems are MAX-SNP-hard.
Keywords:
computational complexity, strong NP-hardness, covering of points, affine committee.
@article{TIMM_2010_16_3_a22,
author = {M. I. Poberii},
title = {On the belonging of the problems {MIN-PC} and {MASC-GP}$(n)$ to the class of {MAX-SNP-hard} problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {210--216},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a22/}
}
TY - JOUR AU - M. I. Poberii TI - On the belonging of the problems MIN-PC and MASC-GP$(n)$ to the class of MAX-SNP-hard problems JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 210 EP - 216 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a22/ LA - ru ID - TIMM_2010_16_3_a22 ER -
M. I. Poberii. On the belonging of the problems MIN-PC and MASC-GP$(n)$ to the class of MAX-SNP-hard problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 210-216. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a22/