On symmetrical $q$-extensions of the 2-dimensional grid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 199-209
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, properties of symmetrical $q$-extensions of the grids are investigated. We obtain a criteria for sets of symmetrical $q$-extensions of the grid $\Lambda^2$ to be finite. Using this criteria we prove, in particular, that the set of all $Aut_0(\Lambda^2)$-symmetrical $q$-extensions of the grid $\Lambda^2$ is finite for any prime $q$. In addition, we give a list of all $Aut_0(\Lambda^2)$-symmetrical 3-extensions of the grid $\Lambda^2$.
Keywords:
$d$-dimensional grids, symmetrical $q$-extensions.
@article{TIMM_2010_16_3_a21,
author = {E. A. Neganova and V. I. Trofimov},
title = {On symmetrical $q$-extensions of the 2-dimensional grid},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {199--209},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a21/}
}
TY - JOUR AU - E. A. Neganova AU - V. I. Trofimov TI - On symmetrical $q$-extensions of the 2-dimensional grid JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 199 EP - 209 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a21/ LA - ru ID - TIMM_2010_16_3_a21 ER -
E. A. Neganova; V. I. Trofimov. On symmetrical $q$-extensions of the 2-dimensional grid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 199-209. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a21/