On symmetrical $q$-extensions of the 2-dimensional grid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 199-209
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, properties of symmetrical $q$-extensions of the grids are investigated. We obtain a criteria for sets of symmetrical $q$-extensions of the grid $\Lambda^2$ to be finite. Using this criteria we prove, in particular, that the set of all $Aut_0(\Lambda^2)$-symmetrical $q$-extensions of the grid $\Lambda^2$ is finite for any prime $q$. In addition, we give a list of all $Aut_0(\Lambda^2)$-symmetrical 3-extensions of the grid $\Lambda^2$.
Keywords: $d$-dimensional grids, symmetrical $q$-extensions.
@article{TIMM_2010_16_3_a21,
     author = {E. A. Neganova and V. I. Trofimov},
     title = {On symmetrical $q$-extensions of the 2-dimensional grid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {199--209},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a21/}
}
TY  - JOUR
AU  - E. A. Neganova
AU  - V. I. Trofimov
TI  - On symmetrical $q$-extensions of the 2-dimensional grid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 199
EP  - 209
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a21/
LA  - ru
ID  - TIMM_2010_16_3_a21
ER  - 
%0 Journal Article
%A E. A. Neganova
%A V. I. Trofimov
%T On symmetrical $q$-extensions of the 2-dimensional grid
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 199-209
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a21/
%G ru
%F TIMM_2010_16_3_a21
E. A. Neganova; V. I. Trofimov. On symmetrical $q$-extensions of the 2-dimensional grid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 199-209. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a21/

[1] Neganova E. A., Trofimov V. I., “O simmetricheskikh $q$-rasshireniyakh reshetok”, Teoriya grupp i ee prilozheniya, Tr. 8-i Mezhdunar. shk.-konf. po teorii grupp, posvyaschennoi 75-letiyu V. A. Belonogova, Nalchik, 2010, 186–189

[2] Neganova E. A., Trofimov V. I., “Simmetricheskie rasshireniya grafov”, Mezhdunar. algebr. konf., posvyaschennaya 70-letiyu A. V. Yakovleva, Tez. dokl., SPb., 2010, 51–53

[3] Seifter N., Trofimov V. I., “Automorphism Groups of Graphs with Quadratic Growth”, J. Comb. Theory. Ser. B, 71:2 (1997), 205–210 | DOI | MR | Zbl

[4] Neganova E. A., Trofimov V. I., “$Aut_0(\Lambda^d)$-simmetricheskie 2-rasshireniya reshetok $\Lambda^d$”, Problemy teoreticheskoi i prikladnoi matematiki, Tez. dokl. 41-i Vseros. mol. shk.-konf., Ekaterinburg, 2010, 64–70

[5] Trofimov V. I., “Ogranichennye avtomorfizmy grafov i odna kharakterizatsiya reshetok”, Izv. AN SSSR. Ser. matematicheskaya, 47:2 (1983), 407–420 | MR | Zbl