Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 195-198
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the groups $PSL_n(\mathbb Z)$ for $n\ge3$ and $SL_n(\mathbb Z)$ for $n\ge3$ and $6\not=n\not=10$, the minimal number of generating involutions is found such that their product is identity.
Keywords: ring of integers, linear group, generating triples of involutions.
@article{TIMM_2010_16_3_a20,
     author = {T. V. Moiseenkova},
     title = {Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {195--198},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a20/}
}
TY  - JOUR
AU  - T. V. Moiseenkova
TI  - Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 195
EP  - 198
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a20/
LA  - ru
ID  - TIMM_2010_16_3_a20
ER  - 
%0 Journal Article
%A T. V. Moiseenkova
%T Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 195-198
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a20/
%G ru
%F TIMM_2010_16_3_a20
T. V. Moiseenkova. Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 195-198. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a20/

[1] Tamburini M. C., Zucca P., “Generation of certain matrix groups by three involutions, two of which commute”, J. Algebra, 195:2 (1997), 650–661 | DOI | MR | Zbl

[2] Nuzhin Ya. N., “O porozhdaemosti gruppy $PSL_n(\mathbb Z)$ tremya involyutsiyami, dve iz kotorykh perestanovochny”, Vladikavkaz. mat. zhurn., 10:1 (2008), 68–74 | MR

[3] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975, 262 pp. | MR | Zbl

[4] Fricke R., Klein F., Vorlesungen ber die Theorie der Elliptischen Modulfunktionen, v. I, Teubner, Leipzig, 1890 ; v. II, 1892 | Zbl

[5] Dubinkina T. V., “Ob odnom svoistve grupp $PSL_3(2^n)$, $PSU_3(2^n)$”, Vest. Krasnoyar. gos. tekhn. un-ta, 16 (2001), 19–34