Voir la notice du chapitre de livre
@article{TIMM_2010_16_3_a20,
author = {T. V. Moiseenkova},
title = {Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {195--198},
year = {2010},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a20/}
}
TY - JOUR AU - T. V. Moiseenkova TI - Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$ JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 195 EP - 198 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a20/ LA - ru ID - TIMM_2010_16_3_a20 ER -
T. V. Moiseenkova. Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 195-198. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a20/
[1] Tamburini M. C., Zucca P., “Generation of certain matrix groups by three involutions, two of which commute”, J. Algebra, 195:2 (1997), 650–661 | DOI | MR | Zbl
[2] Nuzhin Ya. N., “O porozhdaemosti gruppy $PSL_n(\mathbb Z)$ tremya involyutsiyami, dve iz kotorykh perestanovochny”, Vladikavkaz. mat. zhurn., 10:1 (2008), 68–74 | MR
[3] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975, 262 pp. | MR | Zbl
[4] Fricke R., Klein F., Vorlesungen ber die Theorie der Elliptischen Modulfunktionen, v. I, Teubner, Leipzig, 1890 ; v. II, 1892 | Zbl
[5] Dubinkina T. V., “Ob odnom svoistve grupp $PSL_3(2^n)$, $PSU_3(2^n)$”, Vest. Krasnoyar. gos. tekhn. un-ta, 16 (2001), 19–34