Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 195-198
Voir la notice de l'article provenant de la source Math-Net.Ru
For the groups $PSL_n(\mathbb Z)$ for $n\ge3$ and $SL_n(\mathbb Z)$ for $n\ge3$ and $6\not=n\not=10$, the minimal number of generating involutions is found such that their product is identity.
Keywords:
ring of integers, linear group, generating triples of involutions.
@article{TIMM_2010_16_3_a20,
author = {T. V. Moiseenkova},
title = {Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {195--198},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a20/}
}
TY - JOUR AU - T. V. Moiseenkova TI - Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$ JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 195 EP - 198 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a20/ LA - ru ID - TIMM_2010_16_3_a20 ER -
T. V. Moiseenkova. Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 195-198. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a20/