On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VI
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 25-44
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The conjecture that the alternating groups $A_n$ have no pairs of semiproportional irreducible characters is a corollary of a more general conjecture A, formulated in terms of pairs $\chi^\alpha$ and $\chi^\beta$ of irreducible characters of the symmetric group $S_n$ that are semiproportional on one of the sets $A_n$ or $S_n\setminus A_n$ (here $\alpha$ and $\beta$ are partitions of the number n corresponding to these characters). In the paper the investigation of the case is begun in which $h^\alpha_{11}\ne h^\beta_{11}$, i.e. (1, 1)-hooks of the Young diagrams of the partitions $\alpha$ и $\beta$ have different lengths.
Keywords: symmetric groups, alternating groups, irreducible characters, semiproportionality.
@article{TIMM_2010_16_3_a2,
     author = {V. A. Belonogov},
     title = {On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n${.~VI}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {25--44},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a2/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VI
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 25
EP  - 44
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a2/
LA  - ru
ID  - TIMM_2010_16_3_a2
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VI
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 25-44
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a2/
%G ru
%F TIMM_2010_16_3_a2
V. A. Belonogov. On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VI. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 25-44. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a2/

[1] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. I”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 143–163 | Zbl

[2] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. II”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 58–68

[3] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. III”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 4, 2008, 12–30

[4] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. IV”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 12–33

[5] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. V”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 13–34

[6] Belonogov V. A., “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. mat. zhurn., 45:5 (2004), 977–994 | MR | Zbl

[7] Belonogov V. A., “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$”, Algebra i logika, 44:1 (2005), 24–43 | MR | Zbl

[8] Belonogov V. A., “O ravnokornevykh neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Algebra i logika, 46:1 (2007), 3–25 | MR | Zbl

[9] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990, 380 pp. | MR

[10] James G., Kerber A., The representation theory of the symmetric group, Addison-Wesley, London, 1981, 510 pp. | MR

[11] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982, 260 pp. | MR

[12] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$”, Algebra i logika, 47:2 (2008), 135–156 | MR | Zbl

[13] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$ i $A_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 1, 2007, 11–43 | MR

[14] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 13–32