Classification of maximal subgroups of odd index in finite groups with alternating socle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 182-184
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Classification of maximal subgroups of odd index in finite groups with alternating socle is obtained.
Keywords: alternating group, symmetric group, maximal subgroup, odd index.
@article{TIMM_2010_16_3_a18,
     author = {N. V. Maslova},
     title = {Classification of maximal subgroups of odd index in finite groups with alternating socle},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {182--184},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a18/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - Classification of maximal subgroups of odd index in finite groups with alternating socle
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 182
EP  - 184
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a18/
LA  - ru
ID  - TIMM_2010_16_3_a18
ER  - 
%0 Journal Article
%A N. V. Maslova
%T Classification of maximal subgroups of odd index in finite groups with alternating socle
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 182-184
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a18/
%G ru
%F TIMM_2010_16_3_a18
N. V. Maslova. Classification of maximal subgroups of odd index in finite groups with alternating socle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 182-184. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a18/

[1] Liebeck M. W., Saxl J., “The primitive permutation groups of odd degree”, J. London Math. Soc., 31:2 (1985), 250–264 | DOI | MR | Zbl

[2] Kantor W. M., “Primitive permutation groups of odd degree, and an application to the finite projective planes”, J. Algebra, 106:1 (1987), 15–45 | DOI | MR | Zbl

[3] Maslova N. V., “Klassifikatsiya maksimalnykh podgrupp nechetnogo indeksa v konechnykh prostykh klassicheskikh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 4, 2008, 100–118

[4] Maslova N. V., “Maksimalnye podgruppy nechetnogo indeksa v konechnykh gruppakh s prostym lineinym ili unitarnym tsokolem stepeni ne menee 13”, Tr. Mezhdunar. algebr. konf. Algebra i ee prilozheniya, Kabardino-Balkarskii un-t, Nalchik, 2009, 80–82

[5] Maslova N. V., “Maksimalnye podgruppy nechetnogo indeksa v konechnykh gruppakh s prostym simplekticheskim tsokolem stepeni ne menee 13”, Tez. dokl. Mezhdunar. konf. Maltsevskie chteniya, IM i NGU, Novosibirsk, 2009, 69

[6] Maslova N. V., “O maksimalnykh podgruppakh nechetnogo indeksa v konechnykh gruppakh s prostym ortogonalnym tsokolem”, Problemy teoreticheskoi i prikladnoi matematiki, Tez. 41-i Vseros. molodezh. konf., In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2010, 48–52

[7] Conway J. H. [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[8] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[9] Liebeck M. W., Praeger C. E., Saxl J., “A classification of the maximal subgroups of the finite alternating and symmetric groups”, J. Algebra, 111:2 (1987), 365–383 | DOI | MR | Zbl