Voir la notice du chapitre de livre
Keywords: O'Nan–Scott classification.
@article{TIMM_2010_16_3_a16,
author = {A. V. Konygin},
title = {On primitive permutation groups with a~stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a~power of sporadic simple group},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {159--167},
year = {2010},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a16/}
}
TY - JOUR AU - A. V. Konygin TI - On primitive permutation groups with a stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a power of sporadic simple group JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 159 EP - 167 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a16/ LA - ru ID - TIMM_2010_16_3_a16 ER -
%0 Journal Article %A A. V. Konygin %T On primitive permutation groups with a stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a power of sporadic simple group %J Trudy Instituta matematiki i mehaniki %D 2010 %P 159-167 %V 16 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a16/ %G ru %F TIMM_2010_16_3_a16
A. V. Konygin. On primitive permutation groups with a stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a power of sporadic simple group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 159-167. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a16/
[1] Conway J. H. [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 250 pp. | MR | Zbl
[2] Bray J. N., Wilson R. A., “Explicit representations of maximal subgroups of the Monster”, J. Algebra, 300:2 (2006), 834–857 | DOI | MR | Zbl
[3] Cameron P. J., “Suborbits in transitive permutation groups”, Combinatorics. Part 3: Combinatorial group theory, Math. Centre Tracts, 57, Math. Centrum, Amsterdam, 1974, 98–129 | MR
[4] Kleidman P. B., Parker R. A., Wilson R. A., “The maximal subgroups of the Fischer group $Fi_{23}$”, J. London Math. Soc., 39 (1989), 89–101 | DOI | MR | Zbl
[5] Kleidman P. B., Wilson R. A., “The maximal subgroups of $Fi_{22}$”, Math. Proc. Camb. Phil. Soc., 102 (1987), 17–23 | DOI | MR | Zbl
[6] Liebeck M. W., Praeger Ch. E., Saxl J., “On the O'Nan–Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. Ser. A, 44 (1988), 389–396 | DOI | MR | Zbl
[7] Linton S. A., Wilson R. A., “The maximal subgroups of the Fischer groups $Fi_2{4 }$and $Fi'_{24}$”, Proc. London Math. Soc. Ser. 3, 63 (1991), 113–164 | DOI | MR | Zbl
[8] Meierfrankenfeld U., Shpectorov S., Maximal 2-local subgroups of the Monster and Baby Monster, Preprint, 2002, 49 pp.
[9] Norton S. P., “Anatomy of the Monster: I”, The Atlas of Finite Groups Ten Years On, eds. R. T. Curtis, R. A. Wilson, Cambridge University Press, Cambridge, 1998, 198–214 | MR | Zbl
[10] Reitz H. L., “On primitive groups of odd order”, Amer. J. Math., 26 (1904), 1–30 | DOI | MR
[11] The GAP Group. GAP – Groups, Algorithms, and Programming, Ver. 4.4.6 http://www.gap-system.org
[12] Weiss M. J., “On simply transitive groups”, Bull. Amer. Math. Soc., 40 (1934), 401–405 | DOI | MR | Zbl
[13] Wielandt H., Finite permutation groups, Acad. Press, New York, 1964, 114 pp. | MR | Zbl
[14] Wilson R. A., “More on maximal subgroups of the Baby Monster”, Arch. Math., 61 (1993), 497–507 | DOI | MR | Zbl
[15] Wilson R. A., “The maximal subgroups of Conway's group $Co_1$”, J. Algebra, 85:1 (1983), 144–165 | DOI | MR | Zbl
[16] Wilson R. A., “The maximal subgroups of the Baby Monster. I”, J. Algebra, 211:1 (1999), 1–14 | DOI | MR | Zbl
[17] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 16-e izd., In-t matematiki SO RAN, Novosibirsk, 2006, 193 pp.
[18] Konygin A. V., “O primitivnykh gruppakh podstanovok so stabilizatorom dvukh tochek, normalnym v stabilizatore odnoi iz nikh”, Sib. elektron. mat. izv., 5 (2008), 387–406 | MR