On primitive permutation groups with a stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a power of sporadic simple group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 159-167
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Assume that $G$ is a primitive permutation group on a finite set $X$, $x\in X$, $y\in X\setminus\{x\}$ and $G_{x,y}\trianglelefteq G_x$. P. Cameron has raised the question about realization of an equality $G_{x,y}=1$ in this case. It is proved that, if (according to the O'Nan–Scott classification) the group $G$ is of type I, type III(a), or type III(c) or $G$ is of type II and $\operatorname{soc}(G)$ is not an exceptional group of Lie type, then $G_{x,y}=1$. In addition, it is proved that, if the group $G$ is of type III(b) and $\operatorname{soc}(G)$ is not a direct product of exceptional groups of Lie type, then $G_{x,y}=1$.
Mots-clés : primitive permutation group
Keywords: O'Nan–Scott classification.
@article{TIMM_2010_16_3_a16,
     author = {A. V. Konygin},
     title = {On primitive permutation groups with a~stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a~power of sporadic simple group},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {159--167},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a16/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On primitive permutation groups with a stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a power of sporadic simple group
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 159
EP  - 167
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a16/
LA  - ru
ID  - TIMM_2010_16_3_a16
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On primitive permutation groups with a stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a power of sporadic simple group
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 159-167
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a16/
%G ru
%F TIMM_2010_16_3_a16
A. V. Konygin. On primitive permutation groups with a stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a power of sporadic simple group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 159-167. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a16/

[1] Conway J. H. [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 250 pp. | MR | Zbl

[2] Bray J. N., Wilson R. A., “Explicit representations of maximal subgroups of the Monster”, J. Algebra, 300:2 (2006), 834–857 | DOI | MR | Zbl

[3] Cameron P. J., “Suborbits in transitive permutation groups”, Combinatorics. Part 3: Combinatorial group theory, Math. Centre Tracts, 57, Math. Centrum, Amsterdam, 1974, 98–129 | MR

[4] Kleidman P. B., Parker R. A., Wilson R. A., “The maximal subgroups of the Fischer group $Fi_{23}$”, J. London Math. Soc., 39 (1989), 89–101 | DOI | MR | Zbl

[5] Kleidman P. B., Wilson R. A., “The maximal subgroups of $Fi_{22}$”, Math. Proc. Camb. Phil. Soc., 102 (1987), 17–23 | DOI | MR | Zbl

[6] Liebeck M. W., Praeger Ch. E., Saxl J., “On the O'Nan–Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. Ser. A, 44 (1988), 389–396 | DOI | MR | Zbl

[7] Linton S. A., Wilson R. A., “The maximal subgroups of the Fischer groups $Fi_2{4 }$and $Fi'_{24}$”, Proc. London Math. Soc. Ser. 3, 63 (1991), 113–164 | DOI | MR | Zbl

[8] Meierfrankenfeld U., Shpectorov S., Maximal 2-local subgroups of the Monster and Baby Monster, Preprint, 2002, 49 pp.

[9] Norton S. P., “Anatomy of the Monster: I”, The Atlas of Finite Groups Ten Years On, eds. R. T. Curtis, R. A. Wilson, Cambridge University Press, Cambridge, 1998, 198–214 | MR | Zbl

[10] Reitz H. L., “On primitive groups of odd order”, Amer. J. Math., 26 (1904), 1–30 | DOI | MR

[11] The GAP Group. GAP – Groups, Algorithms, and Programming, Ver. 4.4.6 http://www.gap-system.org

[12] Weiss M. J., “On simply transitive groups”, Bull. Amer. Math. Soc., 40 (1934), 401–405 | DOI | MR | Zbl

[13] Wielandt H., Finite permutation groups, Acad. Press, New York, 1964, 114 pp. | MR | Zbl

[14] Wilson R. A., “More on maximal subgroups of the Baby Monster”, Arch. Math., 61 (1993), 497–507 | DOI | MR | Zbl

[15] Wilson R. A., “The maximal subgroups of Conway's group $Co_1$”, J. Algebra, 85:1 (1983), 144–165 | DOI | MR | Zbl

[16] Wilson R. A., “The maximal subgroups of the Baby Monster. I”, J. Algebra, 211:1 (1999), 1–14 | DOI | MR | Zbl

[17] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 16-e izd., In-t matematiki SO RAN, Novosibirsk, 2006, 193 pp.

[18] Konygin A. V., “O primitivnykh gruppakh podstanovok so stabilizatorom dvukh tochek, normalnym v stabilizatore odnoi iz nikh”, Sib. elektron. mat. izv., 5 (2008), 387–406 | MR