On finite triprimary groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 150-158
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Finite groups whose prime graph is disconnected and has exactly three vertices are described.
Keywords: finite group, triprimary group, prime graph, recognition by prime graph.
@article{TIMM_2010_16_3_a15,
     author = {A. S. Kondrat'ev and I. V. Khramtsov},
     title = {On finite triprimary groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {150--158},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a15/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - I. V. Khramtsov
TI  - On finite triprimary groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 150
EP  - 158
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a15/
LA  - ru
ID  - TIMM_2010_16_3_a15
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A I. V. Khramtsov
%T On finite triprimary groups
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 150-158
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a15/
%G ru
%F TIMM_2010_16_3_a15
A. S. Kondrat'ev; I. V. Khramtsov. On finite triprimary groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 150-158. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a15/

[1] Dolfi S., Dzhabara E., Lyuchido M. S., “$C55$-gruppy”, Sib. mat. zhurn., 45:6 (2004), 1285–1298 | MR | Zbl

[2] Zavarnitsin A. V., “O raspoznavanii konechnykh prostykh grupp po grafu prostykh chisel”, Algebra i logika, 45:4 (2006), 390–408 | MR | Zbl

[3] Kondratev A. S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | MR | Zbl

[4] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969, 668 pp. | MR

[5] Mazurov V. D., “Kharakterizatsiya konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[6] Mazurov V. D., “Gruppy s zadannym spektrom”, Izv. Ural. gos. un-ta. Matematika i mekhanika, 36:7 (2005), 119–138 | MR | Zbl

[7] Khosravi A., Khosravi B., “Kvaziraspoznavanie prostoi gruppy $^2G_2(q)$ po grafu prostykh chisel”, Sib. mat. zhurn., 48:3 (2007), 707–716 | MR | Zbl

[8] Khosravi A., Khosravi B., “2-raspoznavaemost $PSL(2,p^2)$ po grafu prostykh chisel”, Sib. mat. zhurn., 49:4 (2008), 934–944 | MR | Zbl

[9] Alperin J. L., “Sylow 2-subgroups of 2-rank three”, North-Holland Math. Studies, 7 (1973), 3–5 | DOI | MR

[10] Jansen C. [et. al.], An atlas of Brauer characters, Clarendon Press, Oxford, 1995, 327 pp. | MR | Zbl

[11] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[12] Conway J. H. [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[13] Hagie M., “The prime graph of a sporadic simple group”, Comm. Algebra, 31:9 (2003), 4405–4424 | DOI | MR | Zbl

[14] Herzog M., “On finite simple groups of order divisible by three primes only”, J. Algebra, 10:3 (1968), 383–388 | DOI | MR | Zbl

[15] Higman G., Odd characterizations of finite simple groups, Lecture notes, University Michigan, Michigan, 1968, 77 pp.

[16] Holt D. F., Plesken W., “$A_5$-invariant 2-groups with no trivial sections”, Quart. J. Math. Oxford Ser. 2, 37:1 (1986), 39–47 | DOI | MR | Zbl

[17] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967, 793 pp. | MR | Zbl

[18] Khosravi B., “$n$-recognition by prime graph of the simple group $PSL(2,q)$”, J. Algebra Appl., 7:6 (2008), 735–748 | DOI | MR | Zbl

[19] Khosravi B., Amiri S. S. S., “Groups with the same prime graph as $L_2(q)$ where $q=p^\alpha100$”, Hadronic J., 30:3 (2007), 343–354 | MR | Zbl

[20] Khosravi Bahman, Khosravi Behnam, Khosravi Behrooz, “On the prime graph of $PSL(2,p)$ where $p>3$ is a prime number”, Acta Math. Hungar., 116:4 (2007), 295–307 | DOI | MR | Zbl

[21] Khosravi Bahnam, Khosravi Behnam, Khosravi Behrooz, “Groups with the same prime graph as a CIT simple group”, Houston J. Math., 33:4 (2007), 967–977, (electronic) | MR | Zbl

[22] Khosravi Bahnam, Khosravi Behnam, Khosravi Behrooz, “A characterization of the finite simple group $L_{16}(2)$ by its prime graph”, Manuscripta math., 126 (2008), 49–58 | DOI | MR | Zbl

[23] O'Nan M. E., “Some evidence for the existence of a new simple group”, Proc. London Math. Soc. Ser. 3, 32:3 (1976), 421–479 | DOI | MR

[24] Prince A. R., “On 2-groups admitting $A_5$ or $A_6$ with an element of order 5 acting fixed point freely”, J. Algebra, 49:2 (1977), 374–386 | DOI | MR | Zbl

[25] Prince A. R., “An analogue of Maschke's theorem for certain representations of $A_6$ over $GF(2)$”, Proc. Roy. Soc. Edinburgh Sect. A, 91:3–4 (1982), 175–177 | MR | Zbl

[26] Chen G. Y., Mazurov V. D., Schi W. J., Vasil'ev A. V., Zhurtov A. Kh., “Recognition of the finite simple groups $PGL_2(q)$ by their spectrum”, J. Group Theory, 10:1 (2007), 71–85 | DOI | MR | Zbl

[27] Stewart W. B., “Groups having strongly self-centralizing 3-centralizers”, Proc. London Math. Soc., 426:4 (1973), 653–680 | DOI | MR

[28] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[29] Zavarnitsine A. V., “Uniqueness of the prime graph of $L_{16}(2)$”, Sib. elektron. mat. izv., 7 (2010), 119–121 | MR

[30] Zurek G., Über $A_5$-invariante 2-Gruppen, Mitt. Math. Sem. Giessen, 155, 1982, 92 pp. | MR | Zbl