On the difference of the Burnside groups $B(2;5)$ and $B_0(2;5)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 133-138
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An algorithm for calculating elements and relations in Burnside groups is described. A comparative analysis of the groups $B(2;5)$ and $B_0(2;5)$ is carried out. It is shown that these groups coincide in the minimal word format up to words of length 29. For lengths of 30–35, relations are found in the group $B_0(2;5)$ such that a violation of at least one of them in $B(2;5)$ would mean the infinity of this group.
Keywords: Burnside problem.
@article{TIMM_2010_16_2_a9,
     author = {A. A. Kuznetsov and A. K. Shlepkin},
     title = {On the difference of the {Burnside} groups $B(2;5)$ and~$B_0(2;5)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {133--138},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a9/}
}
TY  - JOUR
AU  - A. A. Kuznetsov
AU  - A. K. Shlepkin
TI  - On the difference of the Burnside groups $B(2;5)$ and $B_0(2;5)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 133
EP  - 138
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a9/
LA  - ru
ID  - TIMM_2010_16_2_a9
ER  - 
%0 Journal Article
%A A. A. Kuznetsov
%A A. K. Shlepkin
%T On the difference of the Burnside groups $B(2;5)$ and $B_0(2;5)$
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 133-138
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a9/
%G ru
%F TIMM_2010_16_2_a9
A. A. Kuznetsov; A. K. Shlepkin. On the difference of the Burnside groups $B(2;5)$ and $B_0(2;5)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 133-138. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a9/

[1] Kuznetsov A. A., Shlepkin A. K., “Sravnitelnyi analiz bernsaidovykh grupp $B(2,5)$ i $B_0(2,5)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 125–132