Solution in weak sense of a boundary value problem describing thermal convection
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 121-132
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Boundary value problem for the stationary model thermal convection of a high-viscosity inhomogeneous incompressible fluid in the Boussinesq approximation with irregular boundary data for temperature is investigated. Conditions of uniqueness solvability of the boundary value problem are specified. The smoothness of a weak solution subject to the smoothness of initial data and the smoothness of a boundary of a domain, where solution is sought, is investigated.
Keywords: thermal convection, irregular boundary data, weak solution.
@article{TIMM_2010_16_2_a8,
     author = {A. I. Korotkii},
     title = {Solution in weak sense of a~boundary value problem describing thermal convection},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {121--132},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a8/}
}
TY  - JOUR
AU  - A. I. Korotkii
TI  - Solution in weak sense of a boundary value problem describing thermal convection
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 121
EP  - 132
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a8/
LA  - ru
ID  - TIMM_2010_16_2_a8
ER  - 
%0 Journal Article
%A A. I. Korotkii
%T Solution in weak sense of a boundary value problem describing thermal convection
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 121-132
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a8/
%G ru
%F TIMM_2010_16_2_a8
A. I. Korotkii. Solution in weak sense of a boundary value problem describing thermal convection. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 121-132. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a8/

[1] Korotkii A. I., Kovtunov D. A., “O razreshimosti statsionarnykh zadach estestvennoi teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 1, 2008, 61–73

[2] Kovtunov D. A., “Razreshimost statsionarnoi zadachi teplovoi konvektsii vysokovyazkoi zhidkosti”, Differents. uravneniya, 45:1 (2009), 74–85 | MR | Zbl

[3] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kn., Novosibirsk, 1999 | Zbl

[4] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 364 pp.

[5] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Dover Publications, N.Y., 1981, 654 pp. | MR

[6] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Fizmatlit, M., 2001, 736 pp. | MR

[7] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatgiz, M., 1961, 203 pp.

[8] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983, 320 pp. | MR | Zbl

[9] Adams R. A., Sobolev spaces, Acad. Press, N.Y., 1975, 268 pp. | MR | Zbl

[10] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[11] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 392 pp. | MR | Zbl

[12] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 336 pp. | MR

[13] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[14] Smirnov V. I., Kurs vysshei matematiki, v. 5, Fizmatlit, M., 1959, 657 pp.

[15] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR | Zbl

[16] Korotkii A. I., “Zavisimost reshenii ellipticheskikh uravnenii ot koeffitsientov i prilozhenie k korrektnosti zadach optimalnogo upravleniya”, Kachestvennye voprosy teorii differentsialnykh uravnenii i upravlyaemykh sistem, Izd-vo UrO AN SSSR, Sverdlovsk, 1988, 20–33 | MR

[17] Korotkii A. I., Pryamye i obratnye zadachi dinamiki upravlyaemykh sistem s raspredelennymi parametrami, Dis. $\dots$ d-ra fiz.-mat. nauk, IMM UrO RAN, Ekaterinburg, 1993, 331 pp.

[18] Litvinov V. G., Optimizatsiya v ellipticheskikh granichnykh zadachakh s prilozheniyami k mekhanike, Nauka, M., 1987, 368 pp. | MR

[19] Kellogg R. B., Osborn J. E., “A regularity result for the Stokes problem in a convex polygon”, J. Funct. Anal., 21:4 (1976), 397–431 | DOI | MR | Zbl

[20] Dauge M., “Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations”, SIAM J. Math. Anal., 20:1 (1989), 74–97 | DOI | MR | Zbl

[21] Brown R. M., Shen Z., “Estimates for the Stokes operator in Lipschitz domains”, Indiana Univ. Math. J., 44:4 (1995), 1183–1206 | DOI | MR | Zbl

[22] Brown R. M., Perry P. A., Shen Z., “On the dimension of the attractor for the non-homogenous Navier–Stokes equations in non-smooth domains”, Indiana Univ. Math. J., 49:1 (2000), 81–112 | DOI | MR | Zbl

[23] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR