On amply regular graphs with $k=10$, $\lambda=3$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 75-90
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An undirected graph with $v$ vertices in which the degrees of all vertices are equal to $k$, each edge is contained in exactly $\lambda$ triangles, and the intersection of the neighborhoods of any two vertices at distance 2 contains exactly $\mu$ vertices is called amply regular with parameters $(v,k,\lambda,\mu)$. A classification of amply regular graphs with $k=10$, $\lambda=3$ is obtained.
Keywords: amply regular graph, distance-regular graph.
@article{TIMM_2010_16_2_a5,
     author = {K. S. Efimov and A. A. Makhnev and M. S. Nirova},
     title = {On amply regular graphs with $k=10$, $\lambda=3$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {75--90},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a5/}
}
TY  - JOUR
AU  - K. S. Efimov
AU  - A. A. Makhnev
AU  - M. S. Nirova
TI  - On amply regular graphs with $k=10$, $\lambda=3$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 75
EP  - 90
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a5/
LA  - ru
ID  - TIMM_2010_16_2_a5
ER  - 
%0 Journal Article
%A K. S. Efimov
%A A. A. Makhnev
%A M. S. Nirova
%T On amply regular graphs with $k=10$, $\lambda=3$
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 75-90
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a5/
%G ru
%F TIMM_2010_16_2_a5
K. S. Efimov; A. A. Makhnev; M. S. Nirova. On amply regular graphs with $k=10$, $\lambda=3$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 75-90. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a5/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989, 495 pp. | MR | Zbl

[2] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskr. analiz i issled. operatsii, 3:3 (1996), 71–83 | MR | Zbl

[3] Efimov K. S., Makhnev A. A., “O reberno regulyarnykh grafakh s $b_1=6$”, Tez. 7-i Mezhdunarodnoi shkoly-konferentsii po teorii grupp, Chelyabinsk, Izd-vo YuUrGU 2008, 15–18

[4] Makhnev A. A., “O silnoi regulyarnosti nekotorykh reberno regulyarnykh grafov”, Izv. RAN. Cer. matematicheskaya, 68:1 (2004), 159–182 | MR | Zbl