The degree of a cellular map of a rectangle to a three-link band
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 253-257
Voir la notice du chapitre de livre
It is known that the degree of a simplicial triangulation map in Sperners lemma is equal to 1. It is proved similarly that the degree of a cellular map of a rectangle to a three-link band is equal to 3.
Mots-clés :
Sperner's lemma
Keywords: simplicial map, cellular map of a rectangle.
Keywords: simplicial map, cellular map of a rectangle.
@article{TIMM_2010_16_2_a21,
author = {Yu. A. Shashkin},
title = {The degree of a~cellular map of a~rectangle to a~three-link band},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {253--257},
year = {2010},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a21/}
}
Yu. A. Shashkin. The degree of a cellular map of a rectangle to a three-link band. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 253-257. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a21/
[1] Sperner E., “Neuer Beweis die Invarianz der Dimensionszahl und des Gebietes”, Abh. Math. Sem. Univ. Hamburg, 6 (1928), 265–272 | DOI | Zbl
[2] Khadviger G., Debruner G., Kombinatornaya geometriya ploskosti, Nauka, M., 1965, 171 pp. | MR
[3] Shashkin Yu. A., Nepodvizhnye tochki, Nauka, M., 1989, 80 pp. | MR | Zbl
[4] Shashkin Yu. A., Kombinatornye lemmy i simplitsialnye otobrazheniya, Izd-vo UrGU, Ekaterinburg, 1999, 126 pp. | MR
[5] Fan K., “Simplicial maps from an orientablie $n$-pseudomanifol into $S^m$ with the octahedral triangulation”, J. Combin. Theory, 2 (1967), 588–602 | DOI | MR | Zbl