On the guaranteed accuracy estimate of an approximate solution of one inverse problem of thermal diagnostics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 238-252
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An order-optimal method of the approximate solution of the problem of calculating the values of an unbounded operator is suggested.
Keywords: operator equations, regularization, optimal method, error estimate, ill-posed problem.
@article{TIMM_2010_16_2_a20,
     author = {V. P. Tanana and A. I. Sidikova},
     title = {On the guaranteed accuracy estimate of an approximate solution of one inverse problem of thermal diagnostics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {238--252},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a20/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - A. I. Sidikova
TI  - On the guaranteed accuracy estimate of an approximate solution of one inverse problem of thermal diagnostics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 238
EP  - 252
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a20/
LA  - ru
ID  - TIMM_2010_16_2_a20
ER  - 
%0 Journal Article
%A V. P. Tanana
%A A. I. Sidikova
%T On the guaranteed accuracy estimate of an approximate solution of one inverse problem of thermal diagnostics
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 238-252
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a20/
%G ru
%F TIMM_2010_16_2_a20
V. P. Tanana; A. I. Sidikova. On the guaranteed accuracy estimate of an approximate solution of one inverse problem of thermal diagnostics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 238-252. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a20/

[1] Isakov G. N., Kuzin A. Ya., Savelev V. N., Ermolaev F. V., “Opredelenie kharakteristik tonkosloinykh teplozaschitnykh pokrytii iz resheniya obratnykh zadach teplo- i massoperenosa”, Fizika goreniya i vzryva, 2003, no. 5, 86–97

[2] Tanana V. P., Danilin A. R., “Ob optimalnosti regulyarizuyuschikh algoritmov pri reshenii nekorrektnykh zadach”, Differents. uravneniya, 12:7 (1976), 1323–1326 | MR | Zbl

[3] Farlou S., Uravneniya s chastnymi proizvodnymi, Mir, M., 1985, 384 pp. | MR

[4] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2006, 864 pp.

[5] Zorich V. A., Matematicheskii analiz, v. 2, Nauka, M., 1984, 640 pp. | MR | Zbl

[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 623 pp.

[7] Tanana V. P., Sidikova A. I., “Ob optimalnosti po poryadku odnogo metoda vychisleniya znachenii neogranichennogo operatora i ego prilozheniya”, Sib. zhurn. industr. matematiki, 12:3(39) (2009), 130–140

[8] Tanana V. P., “Ob optimalnosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matematiki, 7:2(18) (2004), 117–132 | MR | Zbl