Voir la notice du chapitre de livre
@article{TIMM_2010_16_2_a2,
author = {A. L. Gavrilyuk and A. A. Makhnev and D. V. Paduchikh},
title = {Distance-regular graphs in which neighborhoods of vertices are isomorphic to the {Gewirtz} graph},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {35--47},
year = {2010},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a2/}
}
TY - JOUR AU - A. L. Gavrilyuk AU - A. A. Makhnev AU - D. V. Paduchikh TI - Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 35 EP - 47 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a2/ LA - ru ID - TIMM_2010_16_2_a2 ER -
%0 Journal Article %A A. L. Gavrilyuk %A A. A. Makhnev %A D. V. Paduchikh %T Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph %J Trudy Instituta matematiki i mehaniki %D 2010 %P 35-47 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a2/ %G ru %F TIMM_2010_16_2_a2
A. L. Gavrilyuk; A. A. Makhnev; D. V. Paduchikh. Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 35-47. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a2/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl
[2] Gavrilyuk A. L., Makhnev A. A., “O distantsionno regulyarnykh grafakh, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Dokl. RAN, 428:2 (2009), 157–160 | MR | Zbl
[3] Makhnev A. A., Paduchikh D. V., “O 2-lokalno grafakh Zeidelya”, Izv. RAN. Ser. matematicheskaya, 61:4 (1997), 67–80 | MR | Zbl
[4] Gavrilyuk A. L., Makhnev A. A., “O grafakh Kreina bez treugolnikov”, Dokl. RAN, 403:6 (2006), 727–730 | MR
[5] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskret. analiz i issledovanie operatsii, 3:3 (1996), 71–83 | MR | Zbl
[6] The GAP Group, GAP – Groups, Algorithms, and Programming. Version 4.4.12, 2008 http://www.gap-system.org
[7] Brouwer A. E., Haemers W. H., Spectra of graphs (course notes) http://www.win.tue.nl/~aeb/
[8] Terwilliger P., “A new feasibility condition for distance-regular graphs”, Discrete Math., 61 (1986), 311–315 | DOI | MR | Zbl
[9] van Dam E. R., Haemers W. H., “Eigenvalues and diameter of graphs”, Linear Multilin. Alg., 39 (1995), 33–44 | DOI | MR | Zbl
[10] Brouwer A. E., Mesner D. M., “The connectivity of strongly regular graphs”, Europ. J. Combin., 6 (1985), 215–216 | MR | Zbl
[11] Jurisic A., Koolen J., “1-Homogeneous graphs with coctail party $\mu$-graphs”, J. Algebr. Comb., 18 (2003), 79–98 | DOI | MR | Zbl