Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 35-47
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph (i.e., a strongly regular graph with parameters (56,10,0,2)) are classified.
Keywords: distance-regular graph, strongly regular graph, Gewirtz graph.
@article{TIMM_2010_16_2_a2,
     author = {A. L. Gavrilyuk and A. A. Makhnev and D. V. Paduchikh},
     title = {Distance-regular graphs in which neighborhoods of vertices are isomorphic to the {Gewirtz} graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {35--47},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a2/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 35
EP  - 47
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a2/
LA  - ru
ID  - TIMM_2010_16_2_a2
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%A A. A. Makhnev
%A D. V. Paduchikh
%T Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 35-47
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a2/
%G ru
%F TIMM_2010_16_2_a2
A. L. Gavrilyuk; A. A. Makhnev; D. V. Paduchikh. Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 35-47. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a2/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl

[2] Gavrilyuk A. L., Makhnev A. A., “O distantsionno regulyarnykh grafakh, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Dokl. RAN, 428:2 (2009), 157–160 | MR | Zbl

[3] Makhnev A. A., Paduchikh D. V., “O 2-lokalno grafakh Zeidelya”, Izv. RAN. Ser. matematicheskaya, 61:4 (1997), 67–80 | MR | Zbl

[4] Gavrilyuk A. L., Makhnev A. A., “O grafakh Kreina bez treugolnikov”, Dokl. RAN, 403:6 (2006), 727–730 | MR

[5] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskret. analiz i issledovanie operatsii, 3:3 (1996), 71–83 | MR | Zbl

[6] The GAP Group, GAP – Groups, Algorithms, and Programming. Version 4.4.12, 2008 http://www.gap-system.org

[7] Brouwer A. E., Haemers W. H., Spectra of graphs (course notes) http://www.win.tue.nl/~aeb/

[8] Terwilliger P., “A new feasibility condition for distance-regular graphs”, Discrete Math., 61 (1986), 311–315 | DOI | MR | Zbl

[9] van Dam E. R., Haemers W. H., “Eigenvalues and diameter of graphs”, Linear Multilin. Alg., 39 (1995), 33–44 | DOI | MR | Zbl

[10] Brouwer A. E., Mesner D. M., “The connectivity of strongly regular graphs”, Europ. J. Combin., 6 (1985), 215–216 | MR | Zbl

[11] Jurisic A., Koolen J., “1-Homogeneous graphs with coctail party $\mu$-graphs”, J. Algebr. Comb., 18 (2003), 79–98 | DOI | MR | Zbl