On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 226-237
Voir la notice de l'article provenant de la source Math-Net.Ru
The nonlinear operator equation $B(\lambda)x+R(x,\lambda)=0$ is considered. The linear operator $B(\lambda)$ has no bounded inverse operator for $\lambda=0$. The nonlinear operator $R(x,\lambda)$ is continuous in a neighborhood of zero and $R(0,0)=0$. Sufficient conditions for the existence of a continuous solution $x(\lambda)\to0$ as $\lambda\to0$ in some open set $S$ of a linear normed space $\Lambda$ are obtained. The zero of the space $\Lambda$ belongs to the boundary of the set $S$. A method of constructing a solution with the maximal order of vanishing in a neighborhood of the point $\lambda=0$ is suggested. The zero element is taken as the initial approximation.
Keywords:
nonlinear operator equation, branching solutions, minimal branch, regularizers, vector parameter.
@article{TIMM_2010_16_2_a19,
author = {N. A. Sidorov and R. Yu. Leont'ev},
title = {On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {226--237},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/}
}
TY - JOUR AU - N. A. Sidorov AU - R. Yu. Leont'ev TI - On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 226 EP - 237 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/ LA - ru ID - TIMM_2010_16_2_a19 ER -
%0 Journal Article %A N. A. Sidorov %A R. Yu. Leont'ev %T On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods %J Trudy Instituta matematiki i mehaniki %D 2010 %P 226-237 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/ %G ru %F TIMM_2010_16_2_a19
N. A. Sidorov; R. Yu. Leont'ev. On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 226-237. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/