Voir la notice du chapitre de livre
@article{TIMM_2010_16_2_a19,
author = {N. A. Sidorov and R. Yu. Leont'ev},
title = {On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {226--237},
year = {2010},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/}
}
TY - JOUR AU - N. A. Sidorov AU - R. Yu. Leont'ev TI - On solutions with the maximal order of vanishing of nonlinear equations with a vector parameter in sectorial neighborhoods JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 226 EP - 237 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/ LA - ru ID - TIMM_2010_16_2_a19 ER -
%0 Journal Article %A N. A. Sidorov %A R. Yu. Leont'ev %T On solutions with the maximal order of vanishing of nonlinear equations with a vector parameter in sectorial neighborhoods %J Trudy Instituta matematiki i mehaniki %D 2010 %P 226-237 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/ %G ru %F TIMM_2010_16_2_a19
N. A. Sidorov; R. Yu. Leont'ev. On solutions with the maximal order of vanishing of nonlinear equations with a vector parameter in sectorial neighborhoods. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 226-237. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/
[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 528 pp. | MR | Zbl
[2] Ivanov V. K., Izbrannye nauchnye trudy. Matematika, Fizmatlit, M., 2008, 552 pp.
[3] Leontev R. Yu., “Teoremy o neyavnom operatore v sektorialnykh kvaziokrestnostyakh i minimalnye vetvi reshenii nelineinykh uravnenii”, Vest. YuUrGU. Ser. Matematicheskoe modelirovanie i programmirovanie, 2008, no. 15(115), 37–41
[4] Loginov B. V., Sidorov N. A., “Gruppovaya simmetriya uravneniya razvetvleniya Lyapunova–Shmidta i iteratsionnye metody v zadache o tochke bifurkatsii”, Mat. sb., 182:5 (1991), 681–691 | MR | Zbl
[5] Sidorov N. A., “Minimalnye vetvi reshenii nelineinykh uravnenii i asimptoticheskie regulyarizatory”, Nelineinye granichnye zadachi, 14, In-t prikl. matematiki i mekhaniki, Donetsk, 2004, 161–164
[6] Sidorov N. A., Obschie voprosy regulyarizatsii v zadachakh teorii vetvleniya, Izd-vo IGU, Irkutsk, 1982, 312 pp. | MR | Zbl
[7] Sidorov N. A., Trenogin V. A., “Tochki bifurkatsii nelineinykh uravnenii”, Nelineinyi analiz i nelineinye differentsialnye uravneniya, eds. V. A. Trenogin, A. F. Filippov, Fizmatlit, M., 2003, 5–49 | MR | Zbl
[8] Sidorov N. A., Trenogin V. A., “Regulyarizatsiya prostykh reshenii”, Sib. mat. zhurn., 19:1 (1978), 180–185 | MR | Zbl
[9] Sidorov N. A., “Yavnaya i neyavnaya parametrizatsiya pri postroenii razvetvlyayuschikhsya reshenii iteratsionnymi metodami”, Mat. sb., 186:2 (1995), 129–141 | MR | Zbl
[10] Tikhonov A. N., Ivanov V. K., Lavrentev M. M., “Nekorrektno postavlennye zadachi”, Differentsialnye uravneniya s chastnymi proizvodnymi, Nauka, M., 1970, 224–238
[11] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2007, 488 pp.
[12] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996, 278 pp. | MR | Zbl
[13] Sidorov N. [at al.], Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Acad. Publ., Boston–London–Dordrecht, 2002, 548 pp. | MR | Zbl