On solutions with the maximal order of vanishing of nonlinear equations with a vector parameter in sectorial neighborhoods
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 226-237
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The nonlinear operator equation $B(\lambda)x+R(x,\lambda)=0$ is considered. The linear operator $B(\lambda)$ has no bounded inverse operator for $\lambda=0$. The nonlinear operator $R(x,\lambda)$ is continuous in a neighborhood of zero and $R(0,0)=0$. Sufficient conditions for the existence of a continuous solution $x(\lambda)\to0$ as $\lambda\to0$ in some open set $S$ of a linear normed space $\Lambda$ are obtained. The zero of the space $\Lambda$ belongs to the boundary of the set $S$. A method of constructing a solution with the maximal order of vanishing in a neighborhood of the point $\lambda=0$ is suggested. The zero element is taken as the initial approximation.
Keywords: nonlinear operator equation, branching solutions, minimal branch, regularizers, vector parameter.
@article{TIMM_2010_16_2_a19,
     author = {N. A. Sidorov and R. Yu. Leont'ev},
     title = {On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--237},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/}
}
TY  - JOUR
AU  - N. A. Sidorov
AU  - R. Yu. Leont'ev
TI  - On solutions with the maximal order of vanishing of nonlinear equations with a vector parameter in sectorial neighborhoods
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 226
EP  - 237
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/
LA  - ru
ID  - TIMM_2010_16_2_a19
ER  - 
%0 Journal Article
%A N. A. Sidorov
%A R. Yu. Leont'ev
%T On solutions with the maximal order of vanishing of nonlinear equations with a vector parameter in sectorial neighborhoods
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 226-237
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/
%G ru
%F TIMM_2010_16_2_a19
N. A. Sidorov; R. Yu. Leont'ev. On solutions with the maximal order of vanishing of nonlinear equations with a vector parameter in sectorial neighborhoods. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 226-237. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/

[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 528 pp. | MR | Zbl

[2] Ivanov V. K., Izbrannye nauchnye trudy. Matematika, Fizmatlit, M., 2008, 552 pp.

[3] Leontev R. Yu., “Teoremy o neyavnom operatore v sektorialnykh kvaziokrestnostyakh i minimalnye vetvi reshenii nelineinykh uravnenii”, Vest. YuUrGU. Ser. Matematicheskoe modelirovanie i programmirovanie, 2008, no. 15(115), 37–41

[4] Loginov B. V., Sidorov N. A., “Gruppovaya simmetriya uravneniya razvetvleniya Lyapunova–Shmidta i iteratsionnye metody v zadache o tochke bifurkatsii”, Mat. sb., 182:5 (1991), 681–691 | MR | Zbl

[5] Sidorov N. A., “Minimalnye vetvi reshenii nelineinykh uravnenii i asimptoticheskie regulyarizatory”, Nelineinye granichnye zadachi, 14, In-t prikl. matematiki i mekhaniki, Donetsk, 2004, 161–164

[6] Sidorov N. A., Obschie voprosy regulyarizatsii v zadachakh teorii vetvleniya, Izd-vo IGU, Irkutsk, 1982, 312 pp. | MR | Zbl

[7] Sidorov N. A., Trenogin V. A., “Tochki bifurkatsii nelineinykh uravnenii”, Nelineinyi analiz i nelineinye differentsialnye uravneniya, eds. V. A. Trenogin, A. F. Filippov, Fizmatlit, M., 2003, 5–49 | MR | Zbl

[8] Sidorov N. A., Trenogin V. A., “Regulyarizatsiya prostykh reshenii”, Sib. mat. zhurn., 19:1 (1978), 180–185 | MR | Zbl

[9] Sidorov N. A., “Yavnaya i neyavnaya parametrizatsiya pri postroenii razvetvlyayuschikhsya reshenii iteratsionnymi metodami”, Mat. sb., 186:2 (1995), 129–141 | MR | Zbl

[10] Tikhonov A. N., Ivanov V. K., Lavrentev M. M., “Nekorrektno postavlennye zadachi”, Differentsialnye uravneniya s chastnymi proizvodnymi, Nauka, M., 1970, 224–238

[11] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2007, 488 pp.

[12] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996, 278 pp. | MR | Zbl

[13] Sidorov N. [at al.], Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Acad. Publ., Boston–London–Dordrecht, 2002, 548 pp. | MR | Zbl