On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 226-237

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear operator equation $B(\lambda)x+R(x,\lambda)=0$ is considered. The linear operator $B(\lambda)$ has no bounded inverse operator for $\lambda=0$. The nonlinear operator $R(x,\lambda)$ is continuous in a neighborhood of zero and $R(0,0)=0$. Sufficient conditions for the existence of a continuous solution $x(\lambda)\to0$ as $\lambda\to0$ in some open set $S$ of a linear normed space $\Lambda$ are obtained. The zero of the space $\Lambda$ belongs to the boundary of the set $S$. A method of constructing a solution with the maximal order of vanishing in a neighborhood of the point $\lambda=0$ is suggested. The zero element is taken as the initial approximation.
Keywords: nonlinear operator equation, branching solutions, minimal branch, regularizers, vector parameter.
@article{TIMM_2010_16_2_a19,
     author = {N. A. Sidorov and R. Yu. Leont'ev},
     title = {On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--237},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/}
}
TY  - JOUR
AU  - N. A. Sidorov
AU  - R. Yu. Leont'ev
TI  - On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 226
EP  - 237
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/
LA  - ru
ID  - TIMM_2010_16_2_a19
ER  - 
%0 Journal Article
%A N. A. Sidorov
%A R. Yu. Leont'ev
%T On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 226-237
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/
%G ru
%F TIMM_2010_16_2_a19
N. A. Sidorov; R. Yu. Leont'ev. On solutions with the maximal order of vanishing of nonlinear equations with a~vector parameter in sectorial neighborhoods. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 226-237. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a19/