A geometric method for solving nonlinear partial differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 209-225

Voir la notice de l'article provenant de la source Math-Net.Ru

A geometric method for investigating nonlinear partial differential equations, which was proposed earlier, is developed. The method allows one to obtain both exact solutions of equations and exact solutions of initial-value and boundary-value problems. The corresponding geometric formalism is substantiated. For a nonstationary axisymmetric filter equation, an exact solution with a given boundary regime is constructed and the filter front is obtained.
Keywords: nonlinear partial differential equations, filter equation.
Mots-clés : exact solutions
@article{TIMM_2010_16_2_a18,
     author = {L. I. Rubina and O. N. Ul'yanov},
     title = {A geometric method for solving nonlinear partial differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {209--225},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a18/}
}
TY  - JOUR
AU  - L. I. Rubina
AU  - O. N. Ul'yanov
TI  - A geometric method for solving nonlinear partial differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 209
EP  - 225
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a18/
LA  - ru
ID  - TIMM_2010_16_2_a18
ER  - 
%0 Journal Article
%A L. I. Rubina
%A O. N. Ul'yanov
%T A geometric method for solving nonlinear partial differential equations
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 209-225
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a18/
%G ru
%F TIMM_2010_16_2_a18
L. I. Rubina; O. N. Ul'yanov. A geometric method for solving nonlinear partial differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 209-225. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a18/