A geometric method for solving nonlinear partial differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 209-225
Voir la notice de l'article provenant de la source Math-Net.Ru
A geometric method for investigating nonlinear partial differential equations, which was proposed earlier, is developed. The method allows one to obtain both exact solutions of equations and exact solutions of initial-value and boundary-value problems. The corresponding geometric formalism is substantiated. For a nonstationary axisymmetric filter equation, an exact solution with a given boundary regime is constructed and the filter front is obtained.
Keywords:
nonlinear partial differential equations, filter equation.
Mots-clés : exact solutions
Mots-clés : exact solutions
@article{TIMM_2010_16_2_a18,
author = {L. I. Rubina and O. N. Ul'yanov},
title = {A geometric method for solving nonlinear partial differential equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {209--225},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a18/}
}
TY - JOUR AU - L. I. Rubina AU - O. N. Ul'yanov TI - A geometric method for solving nonlinear partial differential equations JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 209 EP - 225 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a18/ LA - ru ID - TIMM_2010_16_2_a18 ER -
L. I. Rubina; O. N. Ul'yanov. A geometric method for solving nonlinear partial differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 209-225. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a18/