On the representation of lattices by congruence lattices of semigroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 199-208
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that every distributive algebraic lattice such that its compact elements form a lattice with unit can be represented as a congruence lattice for an appropriate semigroup.
Keywords: algebraic lattice, distributive lattice, congruence lattice, semigroup.
@article{TIMM_2010_16_2_a17,
     author = {A. L. Popovich and V. B. Repnitskii},
     title = {On the representation of lattices by congruence lattices of semigroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {199--208},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a17/}
}
TY  - JOUR
AU  - A. L. Popovich
AU  - V. B. Repnitskii
TI  - On the representation of lattices by congruence lattices of semigroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 199
EP  - 208
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a17/
LA  - ru
ID  - TIMM_2010_16_2_a17
ER  - 
%0 Journal Article
%A A. L. Popovich
%A V. B. Repnitskii
%T On the representation of lattices by congruence lattices of semigroups
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 199-208
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a17/
%G ru
%F TIMM_2010_16_2_a17
A. L. Popovich; V. B. Repnitskii. On the representation of lattices by congruence lattices of semigroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 199-208. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a17/

[1] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v 2-kh tomakh, v. 1, Mir, M., 1972, 285 pp. ; т. 2, 422 с. | Zbl

[2] Freese R., Lampe W. A., Taylor W., “Congruence lattices of algebras of fixed similarity type. I”, Pacific J. Math., 82 (1979), 59–68 | MR | Zbl

[3] Grätzer G., General Lattice Theory, New appendices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, F. Wehrung, and R. Wille, 2nd ed., Birkhauser Verlag, Basel, 1998, 663 pp. | MR | Zbl

[4] Grätzer G., Schmidt E. T., “Characterizations of congruence lattices of abstract algebras”, Acta Sci. Math. (Szeged), 24 (1963), 34–59 | MR

[5] Lampe W. A., “Congruence lattices of algebras of fixed similarity type. II”, Pacific J. Math., 103 (1982), 475–508 | MR | Zbl

[6] Lampe W. A., “Results and problems on congruence lattice representations”, Algebra Univers., 55 (2006), 127–135 | DOI | MR | Zbl

[7] Repnitskiǐ V., Tůma J., “Intervals in subgroup lattices of countable locally finite groups”, Algebra Univers., 59 (2008), 49–71 | DOI | MR | Zbl

[8] Ružička P., Tůma J., Wehrung F., “Distributive congruence lattices of congruence-permutable algebras”, J. Algebra, 311:1 (2007), 96–116 | DOI | MR

[9] Schmidt E. T., “The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice”, Acta Sci. Math. (Szeged), 43 (1981), 153–168 | MR | Zbl

[10] Tůma J., “Semilattice-valued measures”, Contr. Gen. Alg. Klagenfurt, 18 (2008), 199–210 | MR

[11] Wehrung F., “A solution to Dilworth's congruence lattice problem”, Advances Math., 216 (2007), 610–625 | DOI | MR | Zbl