Weakly set-open topology
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 167-176
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The properties of the weakly set-open topology on the set $C(X)$ of all real-valued functions defined on a Tikhonov space $X$ are studied. The relation between the $\mathbb R$-compact-open topology and the well-known set-open and uniform topologies on the set $C(X)$ is investigated.
Keywords: space of continuous functions, set-open topology, topology of uniform convergence on a family of sets.
@article{TIMM_2010_16_2_a14,
     author = {A. V. Osipov},
     title = {Weakly set-open topology},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {167--176},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a14/}
}
TY  - JOUR
AU  - A. V. Osipov
TI  - Weakly set-open topology
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 167
EP  - 176
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a14/
LA  - ru
ID  - TIMM_2010_16_2_a14
ER  - 
%0 Journal Article
%A A. V. Osipov
%T Weakly set-open topology
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 167-176
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a14/
%G ru
%F TIMM_2010_16_2_a14
A. V. Osipov. Weakly set-open topology. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 167-176. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a14/

[1] Asanov M. O., Prostranstvo nepreryvnykh otobrazhenii, Dis. $\dots$ kand. fiz.-mat. nauk, Sverdlovsk, 1980, 125 pp.

[2] Nokhrin S. E., Prostranstvo nepreryvnykh funktsii v mnozhestvenno-otkrytykh topologiyakh, Dis. $\dots$ kand. fiz.-mat. nauk, Ekaterinburg, 1997, 131 pp.

[3] Nokhrin S. E., Osipov A. V., “K voprosu o sovpadenii mnozhestvenno-otkrytoi i ravnomernoi topologii”, Trudy In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 177–184

[4] Engelking R., Obschaya topologiya, Mir, M., 1986, 750 pp. | MR

[5] Arens R., Dugundji J., “Topologies for functions spaces”, Pac. J. Math., 1 (1951), 5–31 | MR | Zbl

[6] Beckenstein E., Narici L., Suffel C., Topological algebras, North-Holland Math. Studies, 24, Notas de Matemtica No 60, North Holland Publishing Company, Amsterdam, 1977, 370 pp. | MR | Zbl

[7] Buchwalter H., “Parties bornes d'un espace topologique compltement rgulier”, Sem. Choquet, 1970, Exp. 14, 15 pp. | Zbl

[8] Fox R. H., “On topologis for function spaces”, Bull. Amer. Math. Soc., 51 (1945), 429–432 | DOI | MR | Zbl

[9] Frolik Z., “Generalisations of compact and Lindelf spaces”, Czech. Math. J., 9 (1959), 172–217 | MR | Zbl

[10] Kundu S., Raha A. B., “The bounded-open topology and its relatives”, Rend. Istit. Math. Univ. Trieste, 27:1–2 (1995), 61–77 | MR | Zbl

[11] McCoy R. A., Ntantu I., Topologies properties of spaces of continuous functions, Lect. Notes Math., 1315, Springer-Verlag, Berlin, 1988, 124 pp. | MR | Zbl

[12] McCoy R. A., Ntantu I., “Countability properties of function spaces with set-open topologies”, Topology Proc., 10:2 (1985), 329–345 | MR | Zbl