Approximate calculation of the first eigenvalues of a discrete operator in the case when spectral traces of powers of its resolvent are found approximately
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 158-166
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a discrete differential operator in a separable Hilbert space. Eigenvalues of this operator can be calculated with the use of spectral traces of powers of its resolvent. If the resolvent is a kernel operator, then finite-dimensional matrices are considered instead of powers of the resolvent and approximate values of spectral traces are calculated.
Keywords: Hilbert space, resolvent, eigenvalues.
@article{TIMM_2010_16_2_a13,
     author = {E. M. Maleko},
     title = {Approximate calculation of the first eigenvalues of a~discrete operator in the case when spectral traces of powers of its resolvent are found approximately},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {158--166},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a13/}
}
TY  - JOUR
AU  - E. M. Maleko
TI  - Approximate calculation of the first eigenvalues of a discrete operator in the case when spectral traces of powers of its resolvent are found approximately
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 158
EP  - 166
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a13/
LA  - ru
ID  - TIMM_2010_16_2_a13
ER  - 
%0 Journal Article
%A E. M. Maleko
%T Approximate calculation of the first eigenvalues of a discrete operator in the case when spectral traces of powers of its resolvent are found approximately
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 158-166
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a13/
%G ru
%F TIMM_2010_16_2_a13
E. M. Maleko. Approximate calculation of the first eigenvalues of a discrete operator in the case when spectral traces of powers of its resolvent are found approximately. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 158-166. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a13/

[1] Sadovnichii V. A., Dubrovskii V. V., Maleko E. M., “Ob odnom sposobe priblizhennogo nakhozhdeniya sobstvennykh chisel operatora Shturma–Liuvillya”, Dokl. RAN, 369:1 (1999), 16–18 | MR

[2] Sadovnichii V. A., Dubrovskii V. V., Maleko E. M., Popov A. Yu., “Korrektnost metoda A. A. Dorodnitsyna priblizhennogo vychisleniya sobstvennykh znachenii odnogo klassa kraevykh zadach”, Differents. uravneniya, 38:4 (2002), 471–476 | MR | Zbl

[3] Maleko E. M., Koroleva V. V., “O postroenii sledov “podkhodyaschikh rezolvent” stepenei vozmuschennogo operatora”, Sovremennye metody teorii kraevykh zadach, Materialy Voronezh. vesen. mat. shk. “Pontryaginskie chteniya – XV”, Voronezh, 2004, 141