On cycles of a discrete periodic logistic equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 154-157
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the discrete logistic equation $x_{k+1}=x_k\exp(r_k(1-x_k))$, $k\in Z_+$, where $\{r_k\}$ is a positive $n$-periodic sequence, it is shown that, under the condition $\prod^{n-1}_{k=0}(1-r_k)>1$, the equation has at least two positive $n$-cycles distinct from the equilibrium. Examples are considered.
Keywords: logistic equation, stability
Mots-clés : cycles, equilibria.
@article{TIMM_2010_16_2_a12,
     author = {A. V. Lasunskii},
     title = {On cycles of a~discrete periodic logistic equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {154--157},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a12/}
}
TY  - JOUR
AU  - A. V. Lasunskii
TI  - On cycles of a discrete periodic logistic equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 154
EP  - 157
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a12/
LA  - ru
ID  - TIMM_2010_16_2_a12
ER  - 
%0 Journal Article
%A A. V. Lasunskii
%T On cycles of a discrete periodic logistic equation
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 154-157
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a12/
%G ru
%F TIMM_2010_16_2_a12
A. V. Lasunskii. On cycles of a discrete periodic logistic equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 154-157. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a12/

[1] Coleman B. D., “Nonautonomous logistic equations as models of the adjustment of populations to environmental changes”, Math. Biosci., 45 (1979), 159–173 | DOI | MR | Zbl

[2] Coleman B. D., Hsieh Y. H., Knowles G. P., “On the optimal choice of $r$ for a population in a periodic environment”, Math. Biosci., 46 (1979), 71–85 | DOI | MR | Zbl

[3] Zhou Zhan, Zou Xingfu, “Stable periodic solutions in a discrete periodic logistic equation”, Appl. Math. Lett., 16 (2003), 165–171 | DOI | MR | Zbl

[4] Xiang Hong-jun, Liao Lu-sheng, Wang Jin-hua, “Global attractivity of a nonautonomous discrete Smith equation”, J. Changde Teach. Univ. Natur. Sci. Ed., 13:1 (2001), 13–15