Existence theorem for a~parabolic mixed problem on a~graph with boundary conditions containing time derivatives
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 139-148

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary value problem is considered for a parabolic equation on a geometric graph with boundary conditions containing a time derivative. The theorem on the existence of a solution of the boundary value problem is established, which allows one to represent solutions as contour integrals.
Keywords: differential equation on a graph, method of contour integral.
@article{TIMM_2010_16_2_a10,
     author = {R. Ch. Kulaev},
     title = {Existence theorem for a~parabolic mixed problem on a~graph with boundary conditions containing time derivatives},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {139--148},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a10/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
TI  - Existence theorem for a~parabolic mixed problem on a~graph with boundary conditions containing time derivatives
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 139
EP  - 148
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a10/
LA  - ru
ID  - TIMM_2010_16_2_a10
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%T Existence theorem for a~parabolic mixed problem on a~graph with boundary conditions containing time derivatives
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 139-148
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a10/
%G ru
%F TIMM_2010_16_2_a10
R. Ch. Kulaev. Existence theorem for a~parabolic mixed problem on a~graph with boundary conditions containing time derivatives. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 139-148. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a10/