On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$.~V
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 13-34

Voir la notice de l'article provenant de la source Math-Net.Ru

Investigations are continued concerning the conjecture that the alternating groups $A_n$ have no pairs of semiproportional irreducible characters. In order to prove this conjecture by induction on $n$, the author earlier proposed a new conjecture, formulated in terms of pairs $\chi^\alpha$ and $\chi^\beta$ of irreducible characters of the symmetric group $S_n$ that are semiproportional on one of the set $A_n$ or $S_n\setminus A_n$ ($\alpha$ and $\beta$ are partitions of the number n corresponding to these characters). The theorem proved in this paper allows one to exclude from consideration the item of this conjecture in which the 4-kernels of the partitions $\alpha$ and $\beta$ have type $3^k.2.\Sigma_l$.
Keywords: symmetric groups, alternating groups, irreducible characters, semiproportionality.
@article{TIMM_2010_16_2_a1,
     author = {V. A. Belonogov},
     title = {On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n${.~V}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {13--34},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a1/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$.~V
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 13
EP  - 34
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a1/
LA  - ru
ID  - TIMM_2010_16_2_a1
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$.~V
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 13-34
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a1/
%G ru
%F TIMM_2010_16_2_a1
V. A. Belonogov. On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$.~V. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 2, pp. 13-34. http://geodesic.mathdoc.fr/item/TIMM_2010_16_2_a1/