A direct method for calculating Lyapunov values of two-dimensional dynamical systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 119-126
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A direct method is proposed for studying the behavior of two-dimensional dynamical systems in the critical case when the linear part of the system has two purely imaginary eigenvalues. This method allows one to construct approximations to solutions of the system and to the “turn-round” time of the trajectory in the form of a finite series in powers of the initial datum. With the help of symbolic computations and the proposed method, first approximations of a solution are constructed and expressions for the first three Lyapunov quantities of the Liénard system are written.
Keywords: Lyapunov quantities, limit cycle, symbolic computations.
@article{TIMM_2010_16_1_a9,
     author = {G. A. Leonov and N. V. Kuznetsov and E. V. Kudryashova},
     title = {A direct method for calculating {Lyapunov} values of two-dimensional dynamical systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {119--126},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a9/}
}
TY  - JOUR
AU  - G. A. Leonov
AU  - N. V. Kuznetsov
AU  - E. V. Kudryashova
TI  - A direct method for calculating Lyapunov values of two-dimensional dynamical systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 119
EP  - 126
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a9/
LA  - ru
ID  - TIMM_2010_16_1_a9
ER  - 
%0 Journal Article
%A G. A. Leonov
%A N. V. Kuznetsov
%A E. V. Kudryashova
%T A direct method for calculating Lyapunov values of two-dimensional dynamical systems
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 119-126
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a9/
%G ru
%F TIMM_2010_16_1_a9
G. A. Leonov; N. V. Kuznetsov; E. V. Kudryashova. A direct method for calculating Lyapunov values of two-dimensional dynamical systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 119-126. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a9/

[1] Bautin N. N., Povedenie dinamicheskikh sistem vblizi granits oblasti ustoichivosti, OGIZ, L.; Gostekhizdat, L., 1949, 164 pp.

[2] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1959, 915 pp.

[3] Poincare H., “Memoire sur les courbes definies par lesequations diffeentielles”, J. de Mathematiques Pures et Appliquees, 1:4 (1885), 167–244

[4] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Izd-vo Kharkov. mat. ob-va, Kharkov, 1892, 250 pp.

[5] Bautin N. N., “O chisle predelnykh tsiklov, rozhdayuschikhsya pri izmenenii koeffitsientov iz sostoyanii ravnovesiya tipa fokus ili tsentr”, Mat. cb., 30(72):1 (1952), 181–196 ; Transl. into English by F. V. Atkinson, AMS Tansl., 100, 1954, 19 pp.; reprint, AMS Transl. (1), 5, 1962, 396–413 | MR | Zbl

[6] Lloyd N. G., “Limit cycles of polynomial systems – some recent developments”, New direction in dynamical systems, London Math. Soc. Lecture Note Ser., 127, Cambridge University Press, Cambridge, 1988, 192–234 | MR

[7] Li J., “Hilbert's 16th problem and bifurcation of planar polynomial vector fields”, Int. J. Bifurcation Chaos, 2003, no. 13, 47–106 | MR | Zbl

[8] Chavarriga J., Grau M., “Some open problems related to 16th Hilbert problem”, Sci. Ser. A Math. Sci. (N.S.), 2003, no. 9, 1–26 | MR | Zbl

[9] Lynch S., “Symbolic computation of Lyapunov quantities and the second part of Hilbert's sixteenth problem”, Differential equations with symbolic computations, Birkhäuser, Basel, 2005, 1–26 | MR

[10] Dumortier F., Llibre J., Artes J., Qualitative theory of planar differential systems, Springer, Berlin, 2006, 302 pp. | MR | Zbl

[11] Christopher C., Li Ch., Limit cycles of differential equations, Advanced courses in mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2007, 171 pp. | MR

[12] Gine J., “On some problems in planar differential systems and Hilbert's 16th problem”, Chaos, Solutions and Fractals, 31:5 (2007), 1118–1134 | DOI | MR | Zbl

[13] Yu P., Chen G., “Computation of focus values with applications”, Nonlinear Dynamics, 51:3 (2008), 409–427 | DOI | MR | Zbl

[14] Leonov G. A, Kuznetsov N. V., Kudryashova E. V., “Tsikly dvumernykh sistem. Kompyuternye vychisleniya, dokazatelstva, eksperimenty”, Vest. Sankt-Peterb. gos. un-ta. Ser. 1, 2008, no. 3, 25–61

[15] Kuznetsov N. V., Leonov G. A., “Lyapunov quantities, limit cycles and strange behavior of trajectories in two-dimensional quadratic systems”, J. of Vibroengineering, 10:4 (2008), 460–467

[16] Kuznetsov N. V., Stability and oscillations of dynamical systems: theory and applications, Jyväskylä University Printing House, Jyväskylä, 2008, 120 pp.

[17] Hartman P., Ordinary differential equation, John Willey and Sons, New York, 1964, 612 pp. | MR | Zbl

[18] Lefschetz S., Differential equations: Geometric theory, Interscience Publishers, New York, 1957, 388 pp. | MR | Zbl

[19] Cesari L., Asymptotic behavior and stability problems in ordinary differential equations, Springer, Berlin, 1959, 271 pp. | MR | Zbl

[20] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 525 pp. | MR | Zbl

[21] Cherkass L. A., “O tsiklakh uravneniya $y'=Q_2(x,y)/P_2(x,y)$”, Differents. uravneniya, 9:3 (1973), 1422–1437

[22] Leonov G. A., “Two-dimensional quadratic systems as a Lienard equation”, Differ. Equations Dynam. Syst., 5:3–4 (1997), 289–297 | MR | Zbl

[23] Leonov G. A., “Predelnye tsikly uravneniya Lenara s razryvnymi koeffitsientami”, Dokl. RAN, 426:1 (2009), 47–50 | MR | Zbl