Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 102-118
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Two-dimensional parabolic equations with delay effects in the time component are considered. An alternating direction scheme is constructed for the numerical solution of these equations. The question on the reduction of the problem with inhomogeneous boundary conditions to a problem with homogeneous boundary conditions is considered. The order of approximation error for the alternating direction scheme, stability, and convergence order are investigated.
Mots-clés : parabolic equations
Keywords: delay, alternating direction method.
@article{TIMM_2010_16_1_a8,
     author = {A. V. Lekomtsev and V. G. Pimenov},
     title = {Convergence of the alternating direction method for the numerical solution of a~heat conduction equation with delay},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {102--118},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/}
}
TY  - JOUR
AU  - A. V. Lekomtsev
AU  - V. G. Pimenov
TI  - Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 102
EP  - 118
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/
LA  - ru
ID  - TIMM_2010_16_1_a8
ER  - 
%0 Journal Article
%A A. V. Lekomtsev
%A V. G. Pimenov
%T Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 102-118
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/
%G ru
%F TIMM_2010_16_1_a8
A. V. Lekomtsev; V. G. Pimenov. Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 102-118. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/

[1] Wu J., Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996, 429 pp. | MR

[2] Tavernini L., “Finite difference approximations for a class of semilinear volterra evolution problems”, SIAM J. Numer. Anal., 14:5 (1977), 931–949 | DOI | MR | Zbl

[3] Kim A. V., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno- differentsialnykh uravnenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2004, 256 pp.

[4] Pimenov V. G., “Chislennye metody resheniya uravneniya teploprovodnosti s zapazdyvaniem”, Vest. Udm. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 2, 113–116

[5] Pimenov V. G., Lozhnikov A. B., “Algoritmy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Problemy dinamicheskogo upravleniya, 3, VMK MGU, M., 2008, 161–169

[6] Lekomtsev A. V., “Metod peremennykh napravlenii dlya chislennogo resheniya uravneniya teploprovodnosti s zapazdyvaniem”, Sistemy upravleniya i informatsionnye tekhnologii, 2009, no. 2(36), 8–13

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[8] Pimenov V. G., “Obschie lineinye metody chislennogo resheniya funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 37:1 (2001), 105–114 | MR | Zbl

[9] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977, 456 pp. | MR | Zbl