Voir la notice du chapitre de livre
Keywords: delay, alternating direction method.
@article{TIMM_2010_16_1_a8,
author = {A. V. Lekomtsev and V. G. Pimenov},
title = {Convergence of the alternating direction method for the numerical solution of a~heat conduction equation with delay},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {102--118},
year = {2010},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/}
}
TY - JOUR AU - A. V. Lekomtsev AU - V. G. Pimenov TI - Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 102 EP - 118 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/ LA - ru ID - TIMM_2010_16_1_a8 ER -
%0 Journal Article %A A. V. Lekomtsev %A V. G. Pimenov %T Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay %J Trudy Instituta matematiki i mehaniki %D 2010 %P 102-118 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/ %G ru %F TIMM_2010_16_1_a8
A. V. Lekomtsev; V. G. Pimenov. Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 102-118. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/
[1] Wu J., Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996, 429 pp. | MR
[2] Tavernini L., “Finite difference approximations for a class of semilinear volterra evolution problems”, SIAM J. Numer. Anal., 14:5 (1977), 931–949 | DOI | MR | Zbl
[3] Kim A. V., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno- differentsialnykh uravnenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2004, 256 pp.
[4] Pimenov V. G., “Chislennye metody resheniya uravneniya teploprovodnosti s zapazdyvaniem”, Vest. Udm. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 2, 113–116
[5] Pimenov V. G., Lozhnikov A. B., “Algoritmy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Problemy dinamicheskogo upravleniya, 3, VMK MGU, M., 2008, 161–169
[6] Lekomtsev A. V., “Metod peremennykh napravlenii dlya chislennogo resheniya uravneniya teploprovodnosti s zapazdyvaniem”, Sistemy upravleniya i informatsionnye tekhnologii, 2009, no. 2(36), 8–13
[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR
[8] Pimenov V. G., “Obschie lineinye metody chislennogo resheniya funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 37:1 (2001), 105–114 | MR | Zbl
[9] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977, 456 pp. | MR | Zbl