Convergence of the alternating direction method for the numerical solution of a~heat conduction equation with delay
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 102-118
Voir la notice de l'article provenant de la source Math-Net.Ru
Two-dimensional parabolic equations with delay effects in the time component are considered. An alternating direction scheme is constructed for the numerical solution of these equations. The question on the reduction of the problem with inhomogeneous boundary conditions to a problem with homogeneous boundary conditions is considered. The order of approximation error for the alternating direction scheme, stability, and convergence order are investigated.
Mots-clés :
parabolic equations
Keywords: delay, alternating direction method.
Keywords: delay, alternating direction method.
@article{TIMM_2010_16_1_a8,
author = {A. V. Lekomtsev and V. G. Pimenov},
title = {Convergence of the alternating direction method for the numerical solution of a~heat conduction equation with delay},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {102--118},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/}
}
TY - JOUR AU - A. V. Lekomtsev AU - V. G. Pimenov TI - Convergence of the alternating direction method for the numerical solution of a~heat conduction equation with delay JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 102 EP - 118 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/ LA - ru ID - TIMM_2010_16_1_a8 ER -
%0 Journal Article %A A. V. Lekomtsev %A V. G. Pimenov %T Convergence of the alternating direction method for the numerical solution of a~heat conduction equation with delay %J Trudy Instituta matematiki i mehaniki %D 2010 %P 102-118 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/ %G ru %F TIMM_2010_16_1_a8
A. V. Lekomtsev; V. G. Pimenov. Convergence of the alternating direction method for the numerical solution of a~heat conduction equation with delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 102-118. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a8/