Optimal boundary control of a system describing thermal convection
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 76-101
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of optimal boundary control of thermal sources for a stationary model of natural thermal convection of a high-viscosity inhomogeneous incompressible fluid in the Boussinesq approximation is investigated. Some conditions for the solvability of the problem are given; necessary and sufficient optimality conditions are specified. Optimality conditions and the corresponding conjugate problems defining the gradient of the quality functional are written for a number of particular cases of the functional. Procedures for the numerical finding of an optimal control based on gradient methods are described. The results of numerical experiments are given.
Keywords: optimal control, thermal convection, gradient method.
@article{TIMM_2010_16_1_a7,
     author = {A. I. Korotkii and D. A. Kovtunov},
     title = {Optimal boundary control of a~system describing thermal convection},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {76--101},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a7/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - D. A. Kovtunov
TI  - Optimal boundary control of a system describing thermal convection
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 76
EP  - 101
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a7/
LA  - ru
ID  - TIMM_2010_16_1_a7
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A D. A. Kovtunov
%T Optimal boundary control of a system describing thermal convection
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 76-101
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a7/
%G ru
%F TIMM_2010_16_1_a7
A. I. Korotkii; D. A. Kovtunov. Optimal boundary control of a system describing thermal convection. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 76-101. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a7/

[1] Gad-el-Hak M., “Flow control”, Appl. Mech. Rev., 42:10 (1989), 261–393 | DOI

[2] Alifanov O. M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988, 277 pp.

[3] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982, 319 pp. | MR

[4] Verte L. A., Magnitnaya gidrodinamika v metallurgii, Nauka, M., 1975, 288 pp.

[5] Gelfgat Yu. M., Lielausis O. A., Scherbinin E. V., Zhidkii metall pod vozdeistviem elektromagnitnykh sil, Zinatne, Riga, 1976, 248 pp.

[6] Glukhikh V. A., Tananaev A. V., Kirillov I. R., Magnitnaya gidrodinamika v yadernoi energetike, Nauka, M., 1987, 264 pp.

[7] Lavrentev I. V., “Zhidkometallicheskie sistemy termoyadernykh reaktorov-tokomakov”, Magnitnaya gidrodinamika, 1990, no. 2, 105–124 | MR

[8] Shashkov Yu. N., Vyraschivanie monokristallov metodom vytyagivaniya, Nauka, M., 1982, 312 pp.

[9] Muller G., Convection and inhomogeneties in crystal growth from the melt, Springer-Verlag, Berlin–Heidelberg, 1988, 150 pp.

[10] Gunzburger M. D., Flow control, Springer-Verlag, New York–Berlin–Heidelberg, 1995, 381 pp. | MR | Zbl

[11] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 364 pp.

[12] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR | Zbl

[13] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[14] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973, 244 pp.

[15] Polak E., Chislennye metody otimizatsii. Edinyi podkhod, Mir, M., 1974, 376 pp. | MR | Zbl

[16] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl

[17] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR

[18] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR | Zbl

[19] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp. | Zbl

[20] Litvinov V. G., Optimizatsiya v ellipticheskikh granichnykh zadachakh s prilozheniyami k mekhanike, Nauka, M., 1987, 368 pp. | MR

[21] Korotkii A. I., Kovtunov D. A., “O razreshimosti statsionarnykh zadach estestvennoi teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 1, 2008, 61–73

[22] Kovtunov D. A., “Razreshimost statsionarnoi zadachi teplovoi konvektsii vysokovyazkoi zhidkosti”, Differents. uravneniya, 45:1 (2009), 74–85 | Zbl

[23] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov”, Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi, tr. Mezhdunar. seminara, posvyaschennogo 60-letiyu akad. A. I. Subbotina, v. 2, Izd-vo UrGU, Ekaterinburg, 2006, 82–91

[24] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov v obratnoi zadache teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 88–97 | MR | Zbl

[25] Korotkii A. I., “Granichnoe optimalnoe upravlenie sistemoi, opisyvayuschei teplovuyu konvektsiyu vysokovyazkoi neodnorodnoi neszhimaemoi zhidkosti”, Differentsialnye uravneniya i topologiya, tez. dokl. Mezhdunar. konf., posvyaschennoi 100-letiyu so dnya rozhdeniya L. S. Pontryagina, Izd-vo VMK MGU, M., 2008, 353 pp.

[26] Alekseev G. V., “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravneniya teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl

[27] Alekseev G. V., Smyshlyaev A. B., Tereshko D. A., “Razreshimost kraevoi zadachi dlya statsionarnykh uravnenii teplomassoperenosa pri smeshannykh kraevykh usloviyakh”, Zhurn. vychisl. matematiki i mat. fiziki, 43:1 (2003), 66–80 | MR

[28] Alekseev G. V., “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl

[29] Alekseev G. V., “Razreshimost kraevoi zadachi dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Sib. zhurn. industr. matem., 9:1 (2006), 13–27 | MR

[30] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Dover Publications, New York, 1981, 654 pp. | MR

[31] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Fizmatlit, M., 2001, 736 pp. | MR

[32] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatgiz, M., 1961, 203 pp.

[33] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983, 320 pp. | MR | Zbl

[34] Adams R. A., Sobolev spaces, Acad. Press, New York, 1975, 268 pp. | MR | Zbl

[35] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[36] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 392 pp. | MR | Zbl

[37] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 336 pp. | MR

[38] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[39] Smirnov V. I., Kurs vysshei matematiki, v. 5, Fizmatlit, M., 1959, 657 pp.

[40] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977, 432 pp. | MR

[41] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1968, 832 pp. | MR

[42] Korotkii A. I., “Zavisimost reshenii ellipticheskikh uravnenii ot koeffitsientov i prilozhenie k korrektnosti zadach optimalnogo upravleniya”, Kachestvennye voprosy teorii differentsialnykh uravnenii i upravlyaemykh sistem, UrO AN SSSR, Sverdlovsk, 1988, 20–33 | MR

[43] Korotkii A. I., Pryamye i obratnye zadachi dinamiki upravlyaemykh sistem s raspredelennymi parametrami, Dis. $\dots$ d-ra fiz.-mat. nauk, IMM UrO RAN, Ekaterinburg, 1993, 331 pp.

[44] Kellogg R. B., Osborn J. E., “A regularity result for the Stokes problem in a convex polygon”, J. Funct. Anal., 21:4 (1976), 397–431 | DOI | MR | Zbl

[45] Dauge M., “Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations”, SIAM J. Math. Anal., 20:1 (1989), 74–97 | DOI | MR | Zbl

[46] Brown R. M., Shen Z., “Estimates for the Stokes operator in Lipschitz domains”, Indiana Univ. Math. J., 44:4 (1995), 1183–1206 | DOI | MR | Zbl

[47] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR