Asymptotics of the optimal time in a singular perturbation linear problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 63-75
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A time-optimal control problem is considered for a linear system with fast and slow variables and smooth geometric constraints on the control. For the optimal time and optimal control, asymptotic expansions in a small parameter at the derivatives in the equations of the system and a small perturbation of the initial conditions are constructed.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singular perturbation problems, small parameter.
@article{TIMM_2010_16_1_a6,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotics of the optimal time in a~singular perturbation linear problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {63--75},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a6/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - Asymptotics of the optimal time in a singular perturbation linear problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 63
EP  - 75
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a6/
LA  - ru
ID  - TIMM_2010_16_1_a6
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T Asymptotics of the optimal time in a singular perturbation linear problem
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 63-75
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a6/
%G ru
%F TIMM_2010_16_1_a6
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of the optimal time in a singular perturbation linear problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 63-75. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a6/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[3] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[4] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie, Vyssh. shk., M., 2001, 239 pp.

[5] Kokotovic P. V., Haddad A. H., “Controllability and time-optimal control of systems with slow and fast models”, IEEE Trans. Automat. Control., 20:1 (1975), 111–113 | DOI | MR | Zbl

[6] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Matematicheskii analiz. Itogi nauki i tekhniki, 20, VINITI, M., 1982, 3–77 | MR | Zbl

[7] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987, 156 pp. | MR | Zbl

[8] Gichev T. R., Donchev A. L., “Skhodimost resheniya lineinoi singulyarno vozmuschennoi zadachi bystrodeistviya”, Prikl. matematika i mekhanika, 43:3 (1979), 466–474 | MR | Zbl

[9] Danilin A. R., Ilin A. M., “Asimptotika resheniya zadachi o bystrodeistvii pri vozmuschenii nachalnykh uslovii”, Tekhn. kibernetika, 1994, no. 3, 96–103 | MR | Zbl

[10] Danilin A. R., Ilin A. M., “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i prikl. matematika, 4:3 (1998), 905–926 | MR | Zbl

[11] Kalinin A. I., Semenov K. V., “Asimptoticheskii metod optimizatsii lineinykh singulyarno vozmuschennykh sistem s mnogomernymi upravleniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 44:3 (2004), 432–443 | MR | Zbl

[12] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 472 pp.