On implicit function theorems at abnormal points
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 30-39
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the equation $F(x,\sigma)=0$, $x\in K$, in which $\sigma$ is a parameter and $x$ is an unknown variable taking values in a specified convex cone $K$ lying in a Banach space $X$. This equation is investigated in a neighborhood of a given solution $(x_*,\sigma_*)$, where Robinson's constraint qualification may be violated. We introduce the 2-regularity condition, which is considerably weaker than Robinson's constraint qualification; assuming that it is satisfied, we obtain an implicit function theorem for this equation. The theorem is a generalization of the known implicit function theorems even in the case when the cone $K$ coincides with the whole space $X$.
Keywords: implicit function theorem, abnormal point, 2-regularity, 2-regularity with respect to a cone.
Mots-clés : Robinson's constraint qualification
@article{TIMM_2010_16_1_a2,
     author = {A. V. Arutyunov},
     title = {On implicit function theorems at abnormal points},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--39},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - On implicit function theorems at abnormal points
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 30
EP  - 39
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/
LA  - ru
ID  - TIMM_2010_16_1_a2
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T On implicit function theorems at abnormal points
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 30-39
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/
%G ru
%F TIMM_2010_16_1_a2
A. V. Arutyunov. On implicit function theorems at abnormal points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 30-39. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[2] Tikhomirov V. M., “Teorema Lyusternika o kasatelnom prostranstve i nekotorye ee modifikatsii”, Optimalnoe upravlenie. Matematicheskie voprosy upravleniya proizvodstvom, 7, Izd-vo MGU, M., 1977, 22–30

[3] Robinson S., “Stability theory for systems of inequalities. Part II: Differentiable nonlinear systems”, SIAM J. Num. Anal., 13:4 (1976), 497–513 | DOI | MR | Zbl

[4] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000, 601 pp. | MR | Zbl

[5] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Mat. zametki, 47:5 (1990), 3–13 | MR | Zbl

[6] Izmailov A. F., “Teoremy o predstavlenii semeistv nelineinykh otobrazhenii i teoremy o neyavnoi funktsii”, Mat. zametki, 67:1 (2000), 57–68 | MR | Zbl

[7] Arutyunov A. V., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Mat. sb., 191:1 (2000), 3–26 | MR | Zbl

[8] Arutyunov A. V., “Teorema o neyavnoi funktsii bez apriornykh predpolozhenii normalnosti”, Zhurn. vychisl. matematiki i mat. fiziki, 46:2 (2006), 205–215 | MR | Zbl

[9] Arutyunov A. V., “Nakryvanie nelineinykh otobrazhenii na konuse v okrestnosti anormalnoi tochki”, Mat. zametki, 77:4 (2005), 483–497 | MR | Zbl

[10] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp.

[11] Michael E. A., “Continuous selections”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR | Zbl