Voir la notice du chapitre de livre
Mots-clés : Robinson's constraint qualification
@article{TIMM_2010_16_1_a2,
author = {A. V. Arutyunov},
title = {On implicit function theorems at abnormal points},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {30--39},
year = {2010},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/}
}
A. V. Arutyunov. On implicit function theorems at abnormal points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 30-39. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[2] Tikhomirov V. M., “Teorema Lyusternika o kasatelnom prostranstve i nekotorye ee modifikatsii”, Optimalnoe upravlenie. Matematicheskie voprosy upravleniya proizvodstvom, 7, Izd-vo MGU, M., 1977, 22–30
[3] Robinson S., “Stability theory for systems of inequalities. Part II: Differentiable nonlinear systems”, SIAM J. Num. Anal., 13:4 (1976), 497–513 | DOI | MR | Zbl
[4] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000, 601 pp. | MR | Zbl
[5] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Mat. zametki, 47:5 (1990), 3–13 | MR | Zbl
[6] Izmailov A. F., “Teoremy o predstavlenii semeistv nelineinykh otobrazhenii i teoremy o neyavnoi funktsii”, Mat. zametki, 67:1 (2000), 57–68 | MR | Zbl
[7] Arutyunov A. V., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Mat. sb., 191:1 (2000), 3–26 | MR | Zbl
[8] Arutyunov A. V., “Teorema o neyavnoi funktsii bez apriornykh predpolozhenii normalnosti”, Zhurn. vychisl. matematiki i mat. fiziki, 46:2 (2006), 205–215 | MR | Zbl
[9] Arutyunov A. V., “Nakryvanie nelineinykh otobrazhenii na konuse v okrestnosti anormalnoi tochki”, Mat. zametki, 77:4 (2005), 483–497 | MR | Zbl
[10] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp.
[11] Michael E. A., “Continuous selections”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR | Zbl