On implicit function theorems at abnormal points
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 30-39
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the equation $F(x,\sigma)=0$, $x\in K$, in which $\sigma$ is a parameter and $x$ is an unknown variable taking values in a specified convex cone $K$ lying in a Banach space $X$. This equation is investigated in a neighborhood of a given solution $(x_*,\sigma_*)$, where Robinson's constraint qualification may be violated. We introduce the 2-regularity condition, which is considerably weaker than Robinson's constraint qualification; assuming that it is satisfied, we obtain an implicit function theorem for this equation. The theorem is a generalization of the known implicit function theorems even in the case when the cone $K$ coincides with the whole space $X$.
Keywords:
implicit function theorem, abnormal point, 2-regularity, 2-regularity with respect to a cone.
Mots-clés : Robinson's constraint qualification
Mots-clés : Robinson's constraint qualification
@article{TIMM_2010_16_1_a2,
author = {A. V. Arutyunov},
title = {On implicit function theorems at abnormal points},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {30--39},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/}
}
A. V. Arutyunov. On implicit function theorems at abnormal points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 30-39. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/