On implicit function theorems at abnormal points
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 30-39

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equation $F(x,\sigma)=0$, $x\in K$, in which $\sigma$ is a parameter and $x$ is an unknown variable taking values in a specified convex cone $K$ lying in a Banach space $X$. This equation is investigated in a neighborhood of a given solution $(x_*,\sigma_*)$, where Robinson's constraint qualification may be violated. We introduce the 2-regularity condition, which is considerably weaker than Robinson's constraint qualification; assuming that it is satisfied, we obtain an implicit function theorem for this equation. The theorem is a generalization of the known implicit function theorems even in the case when the cone $K$ coincides with the whole space $X$.
Keywords: implicit function theorem, abnormal point, 2-regularity, 2-regularity with respect to a cone.
Mots-clés : Robinson's constraint qualification
@article{TIMM_2010_16_1_a2,
     author = {A. V. Arutyunov},
     title = {On implicit function theorems at abnormal points},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--39},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - On implicit function theorems at abnormal points
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 30
EP  - 39
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/
LA  - ru
ID  - TIMM_2010_16_1_a2
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T On implicit function theorems at abnormal points
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 30-39
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/
%G ru
%F TIMM_2010_16_1_a2
A. V. Arutyunov. On implicit function theorems at abnormal points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 30-39. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a2/