Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 255-271

Voir la notice de l'article provenant de la source Math-Net.Ru

A Dirichlet problem is considered for a singularly perturbed ordinary differential reaction-diffusion equation. For this problem, a new approach is developed in order to construct difference schemes convergent uniformly with respect to the perturbation parameter $\varepsilon$, $\varepsilon\in(0,1]$. The approach is based on the decomposition of a discrete solution into regular and singular components, which are solutions of discrete subproblems on uniform grids. Using the asymptotic construction technique, a difference scheme of the solution decomposition method is constructed that converges $\varepsilon$-uniformly in the maximum norm at the rate $\mathcal O(N^{-2}\ln^{-2}N)$, where $N+1$ is the number of nodes in the grids used; for fixed values of the parameter $\varepsilon$, the scheme converges at the rate $\mathcal O(N^{-2})$. Using the Richardson technique, an improved scheme of the solution decomposition method is constructed, which converges $\varepsilon$-uniformly in the maximum norm at the rate $\mathcal O(N^{-4 }\ln^{-4}N)$.
Keywords: singularly perturbed boundary value problem, ordinary differential reaction-diffusion equation, asymptotic construction technique, difference scheme of the solution decomposition method, uniform grids, $\varepsilon$-uniform convergence, improved scheme of the solution decomposition method.
Mots-clés : decomposition of a discrete solution, Richardson technique
@article{TIMM_2010_16_1_a19,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {255--271},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/}
}
TY  - JOUR
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 255
EP  - 271
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/
LA  - ru
ID  - TIMM_2010_16_1_a19
ER  - 
%0 Journal Article
%A G. I. Shishkin
%A L. P. Shishkina
%T Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 255-271
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/
%G ru
%F TIMM_2010_16_1_a19
G. I. Shishkin; L. P. Shishkina. Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 255-271. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/