Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 255-271
Voir la notice de l'article provenant de la source Math-Net.Ru
A Dirichlet problem is considered for a singularly perturbed ordinary differential reaction-diffusion equation. For this problem, a new approach is developed in order to construct difference schemes convergent uniformly with respect to the perturbation parameter $\varepsilon$, $\varepsilon\in(0,1]$. The approach is based on the decomposition of a discrete solution into regular and singular components, which are solutions of discrete subproblems on uniform grids. Using the asymptotic construction technique, a difference scheme of the solution decomposition method is constructed that converges $\varepsilon$-uniformly in the maximum norm at the rate $\mathcal O(N^{-2}\ln^{-2}N)$, where $N+1$ is the number of nodes in the grids used; for fixed values of the parameter $\varepsilon$, the scheme converges at the rate $\mathcal O(N^{-2})$. Using the Richardson technique, an improved scheme of the solution decomposition method is constructed, which converges $\varepsilon$-uniformly in the maximum norm at the rate $\mathcal O(N^{-4 }\ln^{-4}N)$.
Keywords:
singularly perturbed boundary value problem, ordinary differential reaction-diffusion equation, asymptotic construction technique, difference scheme of the solution decomposition method, uniform grids, $\varepsilon$-uniform convergence, improved scheme of the solution decomposition method.
Mots-clés : decomposition of a discrete solution, Richardson technique
Mots-clés : decomposition of a discrete solution, Richardson technique
@article{TIMM_2010_16_1_a19,
author = {G. I. Shishkin and L. P. Shishkina},
title = {Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {255--271},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/}
}
TY - JOUR AU - G. I. Shishkin AU - L. P. Shishkina TI - Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 255 EP - 271 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/ LA - ru ID - TIMM_2010_16_1_a19 ER -
%0 Journal Article %A G. I. Shishkin %A L. P. Shishkina %T Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation %J Trudy Instituta matematiki i mehaniki %D 2010 %P 255-271 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/ %G ru %F TIMM_2010_16_1_a19
G. I. Shishkin; L. P. Shishkina. Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 255-271. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/