Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 255-271
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Dirichlet problem is considered for a singularly perturbed ordinary differential reaction-diffusion equation. For this problem, a new approach is developed in order to construct difference schemes convergent uniformly with respect to the perturbation parameter $\varepsilon$, $\varepsilon\in(0,1]$. The approach is based on the decomposition of a discrete solution into regular and singular components, which are solutions of discrete subproblems on uniform grids. Using the asymptotic construction technique, a difference scheme of the solution decomposition method is constructed that converges $\varepsilon$-uniformly in the maximum norm at the rate $\mathcal O(N^{-2}\ln^{-2}N)$, where $N+1$ is the number of nodes in the grids used; for fixed values of the parameter $\varepsilon$, the scheme converges at the rate $\mathcal O(N^{-2})$. Using the Richardson technique, an improved scheme of the solution decomposition method is constructed, which converges $\varepsilon$-uniformly in the maximum norm at the rate $\mathcal O(N^{-4 }\ln^{-4}N)$.
Keywords: singularly perturbed boundary value problem, ordinary differential reaction-diffusion equation, asymptotic construction technique, difference scheme of the solution decomposition method, uniform grids, $\varepsilon$-uniform convergence, improved scheme of the solution decomposition method.
Mots-clés : decomposition of a discrete solution, Richardson technique
@article{TIMM_2010_16_1_a19,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {Improved difference scheme of the solution decomposition method for a~singularly perturbed reaction-diffusion equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {255--271},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/}
}
TY  - JOUR
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 255
EP  - 271
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/
LA  - ru
ID  - TIMM_2010_16_1_a19
ER  - 
%0 Journal Article
%A G. I. Shishkin
%A L. P. Shishkina
%T Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 255-271
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/
%G ru
%F TIMM_2010_16_1_a19
G. I. Shishkin; L. P. Shishkina. Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 255-271. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a19/

[1] Bakhvalov N. C., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 9:4 (1969), 841–859 | Zbl

[2] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992, 233 pp.

[3] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, Singapore, 1996, 166 pp. | MR

[4] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust computational techniques for boundary layers, Chapman HAll/CRC, Boca Raton, 2000, 254 pp. | MR | Zbl

[5] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-diffusion reaction and flow problems, Springer series in computational mathematics, 24, 2 ed., Springer-Verlag, Berlin, 2008, 604 pp. | MR | Zbl

[6] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Chapman Hall/CRC monographs and surveys in pure and applied mathematics, 140, Chapman HAll/CRC, Boca Raton, 2009, 408 pp. | MR | Zbl

[7] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR

[8] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989, 608 pp. | MR | Zbl

[9] Shishkin G. I., “Skhema Richardsona dlya singulyarno vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii s razryvnym nachalnym usloviem”, Zhurn. vychisl. matematiki i mat. fiziki, 49:8 (2009), 1416–1436 | Zbl

[10] Shishkin G. I., Shishkina L. P., “Skhema Richardsona povyshennogo poryadka tochnosti dlya semilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya konvektsii-diffuzii”, Zhurn. vychisl. matematiki i mat. fiziki, 50:3 (2010), 458–478

[11] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Mat. zametki, 6:2 (1969), 237–248 | MR | Zbl

[12] Allen D. N., Southwell R. V., “Relaxation methods applied to determine the motion, in two dimensions, of viscous fluid past a fixed cylinder”, Quart. J. Mech. Appl. Math., 8:2 (1955), 129–145 | DOI | MR | Zbl

[13] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983, 200 pp. | MR

[14] Shishkin G. I., “Approksimatsiya reshenii singulyarno vozmuschennykh kraevykh zadach s parabolicheskim sloem”, Zhurn. vychisl. matematiki i mat. fiziki, 29:7 (1989), 963–977 | MR | Zbl

[15] Shishkin G. I., “Grid approximations of parabolic equations with a small parameter multiplying the space and time derivatives. Reaction-diffusion equations”, Mathematica Balkanica. New Series, 12:1–2 (1998), 179–214 | MR | Zbl

[16] Shishkin G. I., “Aposteriorno adaptiruemye (po gradientu resheniya) setki v approksimatsii singulyarno vozmuschennykh uravnenii konvektsii-diffuzii”, Vychisl. tekhnologii, 6:1–2 (2001), 72–87 | MR | Zbl

[17] Shishkin G. I., “Approksimatsiya singulyarno vozmuschennykh uravnenii reaktsii-diffuzii na adaptivnykh setkakh”, Mat. modelirovanie, 13:3 (2001), 103–118 | MR | Zbl

[18] Shishkin G. I., Shishkina L. P., Hemker P. W., “A class of singularly perturbed convection-diffusion problems with a moving interior layer. An a posteriori adaptive mesh technique”, Comput. Meth. Appl. Math., 4:1 (2004), 105–127 | MR | Zbl

[19] Shishkin G. I., “Ispolzovanie reshenii na vlozhennykh setkakh pri approksimatsii singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii na adaptiruyuschikhsya setkakh”, Zhurn. vychisl. matematiki i mat. fiziki, 46:9 (2006), 1617–1637 | MR

[20] Shishkin G. I., “A finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic convection-diffusion equation”, Numer. Mathematics: Theory, Meth. and Appl., 1:2 (2008), 214–234 | MR | Zbl

[21] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979, 320 pp. | MR

[22] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[23] Shishkin G. I., Shishkina L. P., “Metod Richardsona vysokogo poryadka tochnosti dlya kvazilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Differents. uravneniya, 41:7 (2005), 980–989 | MR | Zbl

[24] Shishkin G. I., “Robust novel high-order accurate numerical methods for singularly perturbed convection-diffusion problems”, Math. Modelling and Analysis, 10:4 (2005), 393–412 | MR | Zbl

[25] Shishkin G. I., “Metod Richardsona povysheniya tochnosti reshenii singulyarno vozmuschennykh ellipticheskikh uravnenii s konvektsiei”, Izv. vuzov. Ser. mat., 2006, no. 2, 57–71 | MR | Zbl

[26] Shishkin G. I., “Setochnye approksimatsii s uluchshennoi skorostyu skhodimosti dlya singulyarno vozmuschennykh ellipticheskikh uravnenii v oblastyakh s kharakteristicheskimi granitsami”, Sib. zhurn. vychisl. matematiki, 5:1 (2002), 71–92 | Zbl

[27] Shishkin G. I., “Setochnaya approksimatsiya s uluchshennoi skorostyu skhodimosti dlya singulyarno vozmuschennogo ellipticheskogo uravneniya konvektsii-diffuzii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9, no. 1, 2003, 165–182 | MR | Zbl

[28] Khemker P. V., Shishkin G. I., Shishkina L. P., “Dekompozitsiya metoda Richardsona vysokogo poryadka tochnosti dlya singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 329–337 | MR

[29] Shishkina L. P., “The Richardson method of high-order accuracy in $t$ for a semilinear singularly perturbed parabolic reaction-diffusion equation on a strip”, Proc. of the Internat. conf. on comput. math., ICCM' 2004, Part 2, ICM MG Publisher, Novosibirsk, 2004, 927–931

[30] Ladyzhenskaya O. A., Colonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR