On one combinatorial lemma
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 244-254
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study $n$-dimensional cubical pseudomanifolds and their cellular mappings. In particular, consider a discrete $n$-cube and all of its $(n-1)$-faces. Then, there exists either one or two or four faces of the cube each of which is mapped to one face.
Keywords: $n$-dimensional discrete cube, cellular mapping, Hamming distance.
@article{TIMM_2010_16_1_a18,
     author = {Yu. A. Shashkin},
     title = {On one combinatorial lemma},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {244--254},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a18/}
}
TY  - JOUR
AU  - Yu. A. Shashkin
TI  - On one combinatorial lemma
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 244
EP  - 254
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a18/
LA  - ru
ID  - TIMM_2010_16_1_a18
ER  - 
%0 Journal Article
%A Yu. A. Shashkin
%T On one combinatorial lemma
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 244-254
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a18/
%G ru
%F TIMM_2010_16_1_a18
Yu. A. Shashkin. On one combinatorial lemma. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 244-254. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a18/

[1] Shashkin Yu. A., “Local degrees of cubical mappings”, Proc. Steklov Inst. Math., Suppl. 2, 2001, S208–S216 | MR | Zbl