On one combinatorial lemma
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 244-254
Voir la notice de l'article provenant de la source Math-Net.Ru
We study $n$-dimensional cubical pseudomanifolds and their cellular mappings. In particular, consider a discrete $n$-cube and all of its $(n-1)$-faces. Then, there exists either one or two or four faces of the cube each of which is mapped to one face.
Keywords:
$n$-dimensional discrete cube, cellular mapping, Hamming distance.
@article{TIMM_2010_16_1_a18,
author = {Yu. A. Shashkin},
title = {On one combinatorial lemma},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {244--254},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a18/}
}
Yu. A. Shashkin. On one combinatorial lemma. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 244-254. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a18/